Moved DEBUG option to config files

This commit is contained in:
saundersp
2023-07-14 23:57:58 +02:00
parent e6194ac485
commit 399024da7a
12 changed files with 280 additions and 268 deletions

View File

@ -12,9 +12,9 @@ from time import perf_counter_ns
from os import makedirs
import numpy as np
#np.seterr(all = 'raise')
from config import FORCE_REDO, COMPILE_WITH_C, GPU_BOOSTED, TS, SAVE_STATE
from config import FORCE_REDO, COMPILE_WITH_C, GPU_BOOSTED, TS, SAVE_STATE, MODEL_DIR, __DEBUG
if __DEBUG:
from config import IDX_INSPECT, IDX_INSPECT_OFFSET
if GPU_BOOSTED:
from ViolaJonesGPU import apply_features, set_integral_image, argsort
@ -26,12 +26,6 @@ else:
from ViolaJonesCPU import apply_features, set_integral_image, argsort
label = 'CPU' if COMPILE_WITH_C else 'PY'
# FIXME Debug code
# IDX_INSPECT = 0
# IDX_INSPECT = 2
IDX_INSPECT = 4548
IDX_INSPECT_OFFSET = 100
def bench_train(X_train: np.ndarray, X_test: np.ndarray, y_train: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Train the weak classifiers.
@ -45,25 +39,23 @@ def bench_train(X_train: np.ndarray, X_test: np.ndarray, y_train: np.ndarray) ->
"""
feats = state_saver("Building features", "feats", lambda: build_features(X_train.shape[1], X_train.shape[2]), FORCE_REDO, SAVE_STATE)
# FIXME Debug code
# print("feats")
# print(feats.shape)
# print(feats[IDX_INSPECT].ravel())
# return 0, 0
if __DEBUG:
print("feats")
print(feats.shape)
print(feats[IDX_INSPECT].ravel())
X_train_ii = state_saver(f"Converting training set to integral images ({label})", f"X_train_ii_{label}",
lambda: set_integral_image(X_train), FORCE_REDO, SAVE_STATE)
X_test_ii = state_saver(f"Converting testing set to integral images ({label})", f"X_test_ii_{label}",
lambda: set_integral_image(X_test), FORCE_REDO, SAVE_STATE)
# FIXME Debug code
# print("X_train_ii")
# print(X_train_ii.shape)
# print(X_train_ii[IDX_INSPECT])
# print("X_test_ii")
# print(X_test_ii.shape)
# print(X_test_ii[IDX_INSPECT])
# return 0, 0
if __DEBUG:
print("X_train_ii")
print(X_train_ii.shape)
print(X_train_ii[IDX_INSPECT])
print("X_test_ii")
print(X_test_ii.shape)
print(X_test_ii[IDX_INSPECT])
X_train_feat = state_saver(f"Applying features to training set ({label})", f"X_train_feat_{label}",
lambda: apply_features(feats, X_train_ii), FORCE_REDO, SAVE_STATE)
@ -71,14 +63,13 @@ def bench_train(X_train: np.ndarray, X_test: np.ndarray, y_train: np.ndarray) ->
lambda: apply_features(feats, X_test_ii), FORCE_REDO, SAVE_STATE)
del X_train_ii, X_test_ii, feats
# FIXME Debug code
# print("X_train_feat")
# print(X_train_feat.shape)
# print(X_train_feat[IDX_INSPECT, : IDX_INSPECT_OFFSET])
# print("X_test_feat")
# print(X_test_feat.shape)
# print(X_test_feat[IDX_INSPECT, : IDX_INSPECT_OFFSET])
# return 0, 0
if __DEBUG:
print("X_train_feat")
print(X_train_feat.shape)
print(X_train_feat[IDX_INSPECT, : IDX_INSPECT_OFFSET])
print("X_test_feat")
print(X_test_feat.shape)
print(X_test_feat[IDX_INSPECT, : IDX_INSPECT_OFFSET])
#indices = state_saver("Selecting best features training set", "indices", force_redo = True, save_state = SAVE_STATE,
# fnc = lambda: SelectPercentile(f_classif, percentile = 10).fit(X_train_feat.T, y_train).get_support(indices = True))
@ -96,40 +87,35 @@ def bench_train(X_train: np.ndarray, X_test: np.ndarray, y_train: np.ndarray) ->
# X_train_feat, X_test_feat = X_train_feat[indices], X_test_feat[indices]
#return 0, 0
X_train_feat_argsort = state_saver(f"Precalculating training set argsort ({label})", f"X_train_feat_argsort_{label}",
lambda: argsort(X_train_feat), FORCE_REDO, SAVE_STATE)
# FIXME Debug code
# print("X_train_feat_argsort")
# print(X_train_feat_argsort.shape)
# print(X_train_feat_argsort[IDX_INSPECT, : IDX_INSPECT_OFFSET])
# benchmark_function("Arg unit test", lambda: unit_test_argsort_2d(X_train_feat, X_train_feat_argsort))
# return 0, 0
if __DEBUG:
print("X_train_feat_argsort")
print(X_train_feat_argsort.shape)
print(X_train_feat_argsort[IDX_INSPECT, : IDX_INSPECT_OFFSET])
benchmark_function("Arg unit test", lambda: unit_test_argsort_2d(X_train_feat, X_train_feat_argsort))
# X_test_feat_argsort = state_saver(f"Precalculating testing set argsort ({label})", f"X_test_feat_argsort_{label}",
# lambda: argsort(X_test_feat), True, False)
X_test_feat_argsort = state_saver(f"Precalculating testing set argsort ({label})", f"X_test_feat_argsort_{label}",
lambda: argsort(X_test_feat), FORCE_REDO, SAVE_STATE)
# FIXME Debug code
# print("X_test_feat_argsort")
# print(X_test_feat_argsort.shape)
# print(X_test_feat_argsort[IDX_INSPECT, : IDX_INSPECT_OFFSET])
# benchmark_function("Arg unit test", lambda: unit_test_argsort_2d(X_test_feat, X_test_feat_argsort))
# return 0, 0
# del X_test_feat_argsort
if __DEBUG:
print("X_test_feat_argsort")
print(X_test_feat_argsort.shape)
print(X_test_feat_argsort[IDX_INSPECT, : IDX_INSPECT_OFFSET])
benchmark_function("Arg unit test", lambda: unit_test_argsort_2d(X_test_feat, X_test_feat_argsort))
del X_test_feat_argsort
print(f"\n| {'Training':<49} | {'Time spent (ns)':<17} | {'Formatted time spent':<29} |\n|{'-'*51}|{'-'*19}|{'-'*31}|")
print(f"\n| {'Training':<49} | {'Time spent (ns)':<18} | {'Formatted time spent':<29} |\n|{'-'*51}|{'-'*20}|{'-'*31}|")
for T in TS:
# alphas, final_classifiers = state_saver(f"ViolaJones T = {T:<3} ({label})", [f"alphas_{T}_{label}", f"final_classifiers_{T}_{label}"],
state_saver(f"ViolaJones T = {T:<4} ({label})", [f"alphas_{T}_{label}", f"final_classifiers_{T}_{label}"],
lambda: train_viola_jones(T, X_train_feat, X_train_feat_argsort, y_train), FORCE_REDO, SAVE_STATE, "./models")
# FIXME Debug code
# print("alphas")
# print(alphas)
# print("final_classifiers")
# print(final_classifiers)
alphas, final_classifiers = state_saver(f"ViolaJones T = {T:<3} ({label})", [f"alphas_{T}_{label}", f"final_classifiers_{T}_{label}"],
lambda: train_viola_jones(T, X_train_feat, X_train_feat_argsort, y_train), FORCE_REDO, SAVE_STATE, MODEL_DIR)
if __DEBUG:
print("alphas")
print(alphas)
print("final_classifiers")
print(final_classifiers)
return X_train_feat, X_test_feat
@ -183,43 +169,37 @@ def _main_() -> None:
for folder_name in ["models", "out"]:
makedirs(folder_name, exist_ok = True)
print(f"| {'Preprocessing':<49} | {'Time spent (ns)':<17} | {'Formatted time spent':<29} |\n|{'-'*51}|{'-'*19}|{'-'*31}|")
print(f"| {'Preprocessing':<49} | {'Time spent (ns)':<18} | {'Formatted time spent':<29} |\n|{'-'*51}|{'-'*20}|{'-'*31}|")
X_train, y_train, X_test, y_test = state_saver("Loading sets", ["X_train", "y_train", "X_test", "y_test"],
load_datasets, FORCE_REDO, SAVE_STATE)
# FIXME Debug option (image width * log_10(length) + extra characters)
# np.set_printoptions(linewidth = 19 * 6 + 3)
# FIXME Debug code
# print("X_train")
# print(X_train.shape)
# print(X_train[IDX_INSPECT])
# print("X_test")
# print(X_test.shape)
# print(X_test[IDX_INSPECT])
# print("y_train")
# print(y_train.shape)
# print(y_train[IDX_INSPECT: IDX_INSPECT + IDX_INSPECT_OFFSET])
# print("y_test")
# print(y_test.shape)
# print(y_test[IDX_INSPECT: IDX_INSPECT + IDX_INSPECT_OFFSET])
# return
if __DEBUG:
print("X_train")
print(X_train.shape)
print(X_train[IDX_INSPECT])
print("X_test")
print(X_test.shape)
print(X_test[IDX_INSPECT])
print("y_train")
print(y_train.shape)
print(y_train[IDX_INSPECT: IDX_INSPECT + IDX_INSPECT_OFFSET])
print("y_test")
print(y_test.shape)
print(y_test[IDX_INSPECT: IDX_INSPECT + IDX_INSPECT_OFFSET])
X_train_feat, X_test_feat = bench_train(X_train, X_test, y_train)
# FIXME Debug code
# return
# X_train_feat, X_test_feat = picke_multi_loader([f"X_train_feat_{label}", f"X_test_feat_{label}"], "./out")
# indices = picke_multi_loader(["indices"], "./out")[0]
# X_train_feat, X_test_feat = picke_multi_loader([f"X_train_feat_{label}", f"X_test_feat_{label}"], OUT_DIR)
# indices = picke_multi_loader(["indices"], OUT_DIR)[0]
# X_train_feat, X_test_feat = X_train_feat[indices], X_test_feat[indices]
bench_accuracy(label, X_train_feat, X_test_feat, y_train, y_test)
if __name__ == "__main__":
#toolbox_unit_test()
_main_()
if __DEBUG:
toolbox_unit_test()
# Only execute unit test after having trained the specified labels
unit_test(TS, ["GPU", "CPU", "PY", "PGPU"])