python : improved documentation
This commit is contained in:
parent
c71b04f00d
commit
4a42747837
@ -18,7 +18,7 @@ else:
|
||||
|
||||
@njit('uint8[:, :, :, :](uint16, uint16)')
|
||||
def build_features(width: int, height: int) -> np.ndarray:
|
||||
"""Initialize the features base on the input shape.
|
||||
"""Initialize the features based on the input shape.
|
||||
|
||||
Args:
|
||||
shape (Tuple[int, int]): Shape of the image (Width, Height)
|
||||
@ -90,9 +90,31 @@ def classify_weak_clf(x_feat_i: np.ndarray, threshold: int, polarity: int) -> np
|
||||
res[polarity * x_feat_i < polarity * threshold] = 1
|
||||
return res
|
||||
|
||||
@njit('uint8[:](float64[:], int32[:, :], int32[:, :])')
|
||||
def classify_viola_jones(alphas: np.ndarray, classifiers: np.ndarray, X_feat: np.ndarray) -> np.ndarray:
|
||||
"""Classify the trained classifiers on the given features.
|
||||
|
||||
Args:
|
||||
alphas (np.ndarray): Trained alphas
|
||||
classifiers (np.ndarray): Trained classifiers
|
||||
X_feat (np.ndarray): Integrated features
|
||||
|
||||
Returns:
|
||||
np.ndarray: Classification results
|
||||
"""
|
||||
total = np.zeros(X_feat.shape[1], dtype = np.float64)
|
||||
|
||||
for i, alpha in enumerate(tqdm_iter(alphas, "Classifying ViolaJones")):
|
||||
(j, threshold, polarity) = classifiers[i]
|
||||
total += alpha * classify_weak_clf(X_feat[j], threshold, polarity)
|
||||
|
||||
y_pred = np.zeros(X_feat.shape[1], dtype = np.uint8)
|
||||
y_pred[total >= 0.5 * np.sum(alphas)] = 1
|
||||
return y_pred
|
||||
|
||||
@njit('Tuple((int32, float64, float64[:]))(int32[:, :], float64[:], int32[:, :], uint8[:])')
|
||||
def select_best(classifiers: np.ndarray, weights: np.ndarray, X_feat: np.ndarray, y: np.ndarray) -> Tuple[int, float, np.ndarray]:
|
||||
"""Select the best classifier given theirs predictions.
|
||||
"""Select the best classifier given their predictions.
|
||||
|
||||
Args:
|
||||
classifiers (np.ndarray): The weak classifiers
|
||||
@ -139,28 +161,6 @@ def train_viola_jones(T: int, X_feat: np.ndarray, X_feat_argsort: np.ndarray, y:
|
||||
|
||||
return alphas, final_classifier
|
||||
|
||||
@njit('uint8[:](float64[:], int32[:, :], int32[:, :])')
|
||||
def classify_viola_jones(alphas: np.ndarray, classifiers: np.ndarray, X_feat: np.ndarray) -> np.ndarray:
|
||||
"""Classify the trained classifiers on the given features.
|
||||
|
||||
Args:
|
||||
alphas (np.ndarray): Trained alphas
|
||||
classifiers (np.ndarray): Trained classifiers
|
||||
X_feat (np.ndarray): Integrated features
|
||||
|
||||
Returns:
|
||||
np.ndarray: Classification results
|
||||
"""
|
||||
total = np.zeros(X_feat.shape[1], dtype = np.float64)
|
||||
|
||||
for i, alpha in enumerate(tqdm_iter(alphas, "Classifying ViolaJones")):
|
||||
(j, threshold, polarity) = classifiers[i]
|
||||
total += alpha * classify_weak_clf(X_feat[j], threshold, polarity)
|
||||
|
||||
y_pred = np.zeros(X_feat.shape[1], dtype = np.uint8)
|
||||
y_pred[total >= 0.5 * np.sum(alphas)] = 1
|
||||
return y_pred
|
||||
|
||||
#@njit
|
||||
#def get_best_anova_features(X: np.ndarray, y: np.ndarray) -> np.ndarray:
|
||||
# #SelectPercentile(f_classif, percentile = 10).fit(X, y).get_support(indices = True)
|
||||
|
@ -175,7 +175,7 @@ def argsort_bounded(d_a: np.ndarray, d_indices: np.ndarray, low: int, high: int)
|
||||
stack[top] = high
|
||||
|
||||
@njit('uint16[:, :](int32[:, :])')
|
||||
def argsort(X_feat: np.ndarray) -> np.ndarray:
|
||||
def argsort_2d(X_feat: np.ndarray) -> np.ndarray:
|
||||
"""Perform an indirect sort of a given array.
|
||||
|
||||
Args:
|
||||
|
@ -32,8 +32,8 @@ def __kernel_scan_3d__(n: int, j: int, d_inter: np.ndarray, d_a: np.ndarray) ->
|
||||
Args:
|
||||
n (int): Number of width blocks
|
||||
j (int): Temporary sum index
|
||||
d_inter (np.ndarray): Temporary sums in device to add
|
||||
d_a (np.ndarray): Dataset of images in device to apply sum
|
||||
d_inter (np.ndarray): Temporary sums on device to add
|
||||
d_a (np.ndarray): Dataset of images on device to apply sum
|
||||
"""
|
||||
x_coor, y_coor = cuda.grid(2)
|
||||
|
||||
@ -76,8 +76,8 @@ def __add_3d__(d_X: np.ndarray, d_s: np.ndarray, n: int, m: int) -> None:
|
||||
"""GPU kernel for parallel sum.
|
||||
|
||||
Args:
|
||||
d_X (np.ndarray): Dataset of images in device
|
||||
d_s (np.ndarray): Temporary sums in device to add
|
||||
d_X (np.ndarray): Dataset of images on device
|
||||
d_s (np.ndarray): Temporary sums on device to add
|
||||
n (int): Number of width blocks
|
||||
m (int): Height of a block
|
||||
"""
|
||||
@ -131,7 +131,7 @@ def __transpose_kernel__(d_X: np.ndarray, d_Xt: np.ndarray) -> None:
|
||||
"""GPU kernel of the function __transpose_3d__.
|
||||
|
||||
Args:
|
||||
d_X (np.ndarray): Dataset of images in device
|
||||
d_X (np.ndarray): Dataset of images on device
|
||||
d_Xt(np.ndarray): Transposed dataset of images
|
||||
width (int): Width of each images in the dataset
|
||||
height (int): Height of each images in the dataset
|
||||
@ -184,11 +184,11 @@ def __train_weak_clf_kernel__(d_classifiers: np.ndarray, d_y: np.ndarray, d_X_fe
|
||||
"""GPU kernel of the function train_weak_clf.
|
||||
|
||||
Args:
|
||||
d_classifiers (np.ndarray): Weak classifiers to train
|
||||
d_y (np.ndarray): Labels of the features
|
||||
d_X_feat (np.ndarray): Feature images dataset
|
||||
d_X_feat_argsort (np.ndarray): Sorted indexes of the integrated features
|
||||
d_weights (np.ndarray): Weights of the features
|
||||
d_classifiers (np.ndarray): Weak classifiers on device to train
|
||||
d_y (np.ndarray): Labels of the features on device
|
||||
d_X_feat (np.ndarray): Feature images dataset on device
|
||||
d_X_feat_argsort (np.ndarray): Sorted indexes of the integrated features on device
|
||||
d_weights (np.ndarray): Weights of the features on device
|
||||
total_pos (float): Total of positive labels in the dataset
|
||||
total_neg (float): Total of negative labels in the dataset
|
||||
"""
|
||||
@ -259,29 +259,29 @@ def __compute_feature__(ii: np.ndarray, x: int, y: int, w: int, h: int) -> int:
|
||||
return ii[y + h, x + w] + ii[y, x] - ii[y + h, x] - ii[y, x + w]
|
||||
|
||||
@cuda.jit('void(int32[:, :], uint8[:, :, :, :], uint32[:, :, :])')
|
||||
def __apply_feature_kernel__(X_feat: np.ndarray, feats: np.ndarray, X_ii: np.ndarray) -> None:
|
||||
def __apply_feature_kernel__(d_X_feat: np.ndarray, d_feats: np.ndarray, d_X_ii: np.ndarray) -> None:
|
||||
"""GPU kernel of the function apply_features.
|
||||
|
||||
Args:
|
||||
X_feat (np.ndarray): Feature images dataset on device
|
||||
feats (np.ndarray): Features on device to apply
|
||||
X_ii (np.ndarray): Integrated image dataset on device
|
||||
d_X_feat (np.ndarray): Feature images dataset on device
|
||||
d_feats (np.ndarray): Features on device to apply
|
||||
d_X_ii (np.ndarray): Integrated image dataset on device
|
||||
n (int): Number of features
|
||||
m (int): Number of images of the dataset
|
||||
"""
|
||||
x, y = cuda.grid(2)
|
||||
if x >= feats.shape[0] or y >= X_ii.shape[0]:
|
||||
if x >= d_feats.shape[0] or y >= d_X_ii.shape[0]:
|
||||
return
|
||||
|
||||
p_x, p_y, p_w, p_h = feats[x, 0, 0]
|
||||
p1_x, p1_y, p1_w, p1_h = feats[x, 0, 1]
|
||||
n_x, n_y, n_w, n_h = feats[x, 1, 0]
|
||||
n1_x, n1_y, n1_w, n1_h = feats[x, 1, 1]
|
||||
sP = __compute_feature__(X_ii[y], p_x, p_y, p_w, p_h) + \
|
||||
__compute_feature__(X_ii[y], p1_x, p1_y, p1_w, p1_h)
|
||||
sN = __compute_feature__(X_ii[y], n_x, n_y, n_w, n_h) + \
|
||||
__compute_feature__(X_ii[y], n1_x, n1_y, n1_w, n1_h)
|
||||
X_feat[x, y] = sP - sN
|
||||
p_x, p_y, p_w, p_h = d_feats[x, 0, 0]
|
||||
p1_x, p1_y, p1_w, p1_h = d_feats[x, 0, 1]
|
||||
n_x, n_y, n_w, n_h = d_feats[x, 1, 0]
|
||||
n1_x, n1_y, n1_w, n1_h = d_feats[x, 1, 1]
|
||||
sP = __compute_feature__(d_X_ii[y], p_x, p_y, p_w, p_h) + \
|
||||
__compute_feature__(d_X_ii[y], p1_x, p1_y, p1_w, p1_h)
|
||||
sN = __compute_feature__(d_X_ii[y], n_x, n_y, n_w, n_h) + \
|
||||
__compute_feature__(d_X_ii[y], n1_x, n1_y, n1_w, n1_h)
|
||||
d_X_feat[x, y] = sP - sN
|
||||
|
||||
#@njit('int32[:, :](uint8[:, :, :, :], uint32[:, :, :])')
|
||||
def apply_features(feats: np.ndarray, X_ii: np.ndarray) -> np.ndarray:
|
||||
@ -303,7 +303,7 @@ def apply_features(feats: np.ndarray, X_ii: np.ndarray) -> np.ndarray:
|
||||
return d_X_feat.copy_to_host()
|
||||
|
||||
@cuda.jit('int32(int32[:], uint16[:], int32, int32)', device = True)
|
||||
def _as_partition_(d_a: np.ndarray, d_indices: np.ndarray, l: int, h: int) -> int:
|
||||
def _as_partition_(d_a: np.ndarray, d_indices: np.ndarray, low: int, high: int) -> int:
|
||||
"""Partition of the argsort algorithm.
|
||||
|
||||
Args:
|
||||
@ -315,10 +315,10 @@ def _as_partition_(d_a: np.ndarray, d_indices: np.ndarray, l: int, h: int) -> in
|
||||
Returns:
|
||||
int: Last index sorted
|
||||
"""
|
||||
i = l - 1
|
||||
j = l
|
||||
for j in range(l, h + 1):
|
||||
if d_a[d_indices[j]] < d_a[d_indices[h]]:
|
||||
i = low - 1
|
||||
j = low
|
||||
for j in range(low, high + 1):
|
||||
if d_a[d_indices[j]] < d_a[d_indices[high]]:
|
||||
i += 1
|
||||
d_indices[i], d_indices[j] = d_indices[j], d_indices[i]
|
||||
|
||||
@ -368,11 +368,11 @@ def argsort_bounded(d_a: np.ndarray, d_indices: np.ndarray, low: int, high: int)
|
||||
@cuda.jit('void(int32[:, :], uint16[:, :])')
|
||||
def argsort_flatter(d_a: np.ndarray, d_indices: np.ndarray) -> None:
|
||||
# TODO Finish doxygen
|
||||
"""Cuda kernel where argsort is applied to every columns of a given 2D array.
|
||||
"""Cuda kernel where argsort is applied to every column of a given 2D array.
|
||||
|
||||
Args:
|
||||
d_a (np.ndarray): Array in device to sort
|
||||
d_indices (np.ndarray): Array of indices on device to write to
|
||||
d_a (np.ndarray): 2D Array on device to sort
|
||||
d_indices (np.ndarray): 2D Array of indices on device to write to
|
||||
"""
|
||||
i = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x
|
||||
if i < d_a.shape[0]:
|
||||
@ -380,19 +380,19 @@ def argsort_flatter(d_a: np.ndarray, d_indices: np.ndarray) -> None:
|
||||
d_indices[i, j] = j
|
||||
argsort_bounded(d_a[i], d_indices[i], 0, d_a.shape[1] - 1)
|
||||
|
||||
def argsort(a: np.ndarray) -> np.ndarray:
|
||||
"""Perform an indirect sort of a given array
|
||||
def argsort_2d(a: np.ndarray) -> np.ndarray:
|
||||
"""Perform an indirect sort on each column of a given 2D array
|
||||
|
||||
Args:
|
||||
a (np.ndarray): Array to sort
|
||||
a (np.ndarray): 2D Array to sort
|
||||
|
||||
Returns:
|
||||
np.ndarray: Array of indices that sort the array
|
||||
np.ndarray: 2D Array of indices that sort the array
|
||||
"""
|
||||
indices = np.empty_like(a, dtype = np.uint16)
|
||||
n_blocks = int(np.ceil(np.divide(a.shape[0], NB_THREADS)))
|
||||
d_X_feat = cuda.to_device(a)
|
||||
d_a = cuda.to_device(a)
|
||||
d_indices = cuda.to_device(indices)
|
||||
argsort_flatter[n_blocks, NB_THREADS](d_X_feat, d_indices)
|
||||
argsort_flatter[n_blocks, NB_THREADS](d_a, d_indices)
|
||||
cuda.synchronize()
|
||||
return d_indices.copy_to_host()
|
||||
|
@ -20,13 +20,13 @@ if __DEBUG:
|
||||
from config import IDX_INSPECT, IDX_INSPECT_OFFSET
|
||||
|
||||
if GPU_BOOSTED:
|
||||
from ViolaJonesGPU import apply_features, set_integral_image, argsort
|
||||
from ViolaJonesGPU import apply_features, set_integral_image, argsort_2d
|
||||
label = 'GPU' if COMPILE_WITH_C else 'PGPU'
|
||||
# The parallel prefix sum doesn't use the whole GPU so numba output some annoying warnings, this disables it
|
||||
from numba import config
|
||||
config.CUDA_LOW_OCCUPANCY_WARNINGS = 0
|
||||
else:
|
||||
from ViolaJonesCPU import apply_features, set_integral_image, argsort
|
||||
from ViolaJonesCPU import apply_features, set_integral_image, argsort_2d
|
||||
label = 'CPU' if COMPILE_WITH_C else 'PY'
|
||||
|
||||
def preprocessing() -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
||||
@ -37,7 +37,7 @@ def preprocessing() -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.
|
||||
- Calculate features
|
||||
- Calculate integral images
|
||||
- Apply features to images
|
||||
- Calculate argsort of the featured images.
|
||||
- Calculate argsort of the featured images
|
||||
|
||||
Returns:
|
||||
Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]: Tuple containing in order : training features, training features sorted indexes, training labels, testing features, testing labels
|
||||
@ -119,7 +119,7 @@ def preprocessing() -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.
|
||||
# X_train_feat, X_test_feat = X_train_feat[indices], X_test_feat[indices]
|
||||
|
||||
X_train_feat_argsort = state_saver(f'Precalculating training set argsort ({label})', preproc_gaps[0], f'X_train_feat_argsort_{label}',
|
||||
lambda: argsort(X_train_feat), FORCE_REDO, SAVE_STATE)
|
||||
lambda: argsort_2d(X_train_feat), FORCE_REDO, SAVE_STATE)
|
||||
|
||||
if __DEBUG:
|
||||
print('X_train_feat_argsort')
|
||||
@ -128,7 +128,7 @@ def preprocessing() -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.
|
||||
benchmark_function('Arg unit test', preproc_gaps[0], lambda: unit_test_argsort_2d(X_train_feat, X_train_feat_argsort))
|
||||
|
||||
X_test_feat_argsort = state_saver(f'Precalculating testing set argsort ({label})', preproc_gaps[0], f'X_test_feat_argsort_{label}',
|
||||
lambda: argsort(X_test_feat), FORCE_REDO, SAVE_STATE)
|
||||
lambda: argsort_2d(X_test_feat), FORCE_REDO, SAVE_STATE)
|
||||
|
||||
if __DEBUG:
|
||||
print('X_test_feat_argsort')
|
||||
|
@ -4,7 +4,7 @@ import numpy as np
|
||||
from sys import stderr
|
||||
import pickle
|
||||
import os
|
||||
from config import MODEL_DIR, OUT_DIR
|
||||
from config import MODEL_DIR, OUT_DIR, __DEBUG
|
||||
from decorators import njit
|
||||
|
||||
def formatted_row(gaps: list[int], titles: list[str], separator: str = '│') -> None:
|
||||
@ -49,7 +49,7 @@ def header(gaps: list[int], titles: list[str]) -> None:
|
||||
formatted_line(gaps, '├', '┼', '─', '┤')
|
||||
|
||||
def footer(gaps: list[int]) -> None:
|
||||
"""Print a formatted fooder with the given sizes
|
||||
"""Print a formatted footer with the given sizes.
|
||||
|
||||
Args:
|
||||
gaps: List of size gaps
|
||||
@ -128,7 +128,7 @@ def pickle_multi_loader(filenames: List[str], save_dir: str = MODEL_DIR) -> List
|
||||
return b
|
||||
|
||||
def benchmark_function(step_name: str, column_width: int, fnc: Callable) -> Any:
|
||||
"""Benchmark a function and display the result of stdout.
|
||||
"""Benchmark a function and display the result in stdout.
|
||||
|
||||
Args:
|
||||
step_name (str): Name of the function to call
|
||||
@ -202,14 +202,14 @@ def state_saver(step_name: str, column_width: int, filename: Union[str, List[str
|
||||
|
||||
@njit('boolean(int32[:, :], uint16[:, :])')
|
||||
def unit_test_argsort_2d(arr: np.ndarray, indices: np.ndarray) -> bool:
|
||||
"""Test if a given array of indices sort a given array.
|
||||
"""Test if a given 2D array of indices sort a given 2D array.
|
||||
|
||||
Args:
|
||||
arr (np.ndarray): Array of data
|
||||
indices (np.ndarray): Indices that sort arr
|
||||
arr (np.ndarray): 2D Array of data
|
||||
indices (np.ndarray): 2D Indices that sort the array
|
||||
|
||||
Returns:
|
||||
bool: Success of the test
|
||||
bool: Whether the test was successful
|
||||
"""
|
||||
n = indices.shape[0]
|
||||
total = indices.shape[0] * indices.shape[1]
|
||||
@ -217,6 +217,7 @@ def unit_test_argsort_2d(arr: np.ndarray, indices: np.ndarray) -> bool:
|
||||
for j in range(sub_indices.shape[0] - 1):
|
||||
if arr[i, sub_indices[j]] <= arr[i, sub_indices[j + 1]]:
|
||||
n += 1
|
||||
if __DEBUG:
|
||||
if n != total:
|
||||
print(n, total, n / (total))
|
||||
return n == total
|
||||
|
Loading…
x
Reference in New Issue
Block a user