python : Updated code with better display, documentation and format_time

This commit is contained in:
saundersp
2024-04-28 00:25:13 +02:00
parent c7d21e1014
commit 718724b63b
11 changed files with 591 additions and 566 deletions

View File

@ -12,10 +12,10 @@ def __scanCPU_3d__(X: np.ndarray) -> np.ndarray:
"""Prefix Sum (scan) of a given dataset.
Args:
X (np.ndarray): Dataset of images to apply sum.
X (np.ndarray): Dataset of images to apply sum
Returns:
np.ndarray: Scanned dataset of images.
np.ndarray: Scanned dataset of images
"""
for x in range(X.shape[0]):
for y in range(X.shape[1]):
@ -30,10 +30,10 @@ def __kernel_scan_3d__(n: int, j: int, d_inter: np.ndarray, d_a: np.ndarray) ->
"""GPU kernel used to do a parallel prefix sum (scan).
Args:
n (int):
j (int): [description]
d_inter (np.ndarray): [description]
d_a (np.ndarray): [description]
n (int): Number of width blocks
j (int): Temporary sum index
d_inter (np.ndarray): Temporary sums in device to add
d_a (np.ndarray): Dataset of images in device to apply sum
"""
x_coor, y_coor = cuda.grid(2)
@ -76,10 +76,10 @@ def __add_3d__(d_X: np.ndarray, d_s: np.ndarray, n: int, m: int) -> None:
"""GPU kernel for parallel sum.
Args:
d_X (np.ndarray): Dataset of images.
d_s (np.ndarray): Temporary sums to add.
n (int): Number of width blocks.
m (int): Height of a block.
d_X (np.ndarray): Dataset of images in device
d_s (np.ndarray): Temporary sums in device to add
n (int): Number of width blocks
m (int): Height of a block
"""
x_coor, y_coor = cuda.grid(2)
if x_coor < n and y_coor < m:
@ -91,10 +91,10 @@ def __scanGPU_3d__(X: np.ndarray) -> np.ndarray:
Read more: https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
Args:
X (np.ndarray): Dataset of images.
X (np.ndarray): Dataset of images
Returns:
np.ndarray: Scanned dataset of images.
np.ndarray: Scanned dataset of images
"""
k, height, n = X.shape
n_block_x, n_block_y = np.ceil(np.divide(X.shape[1:], NB_THREADS_2D)).astype(np.uint64)
@ -131,10 +131,10 @@ def __transpose_kernel__(d_X: np.ndarray, d_Xt: np.ndarray) -> None:
"""GPU kernel of the function __transpose_3d__.
Args:
d_X (np.ndarray): Dataset of images.
d_Xt(np.ndarray): Transposed dataset of images.
width (int): Width of each images in the dataset.
height (int): Height of each images in the dataset.
d_X (np.ndarray): Dataset of images in device
d_Xt(np.ndarray): Transposed dataset of images
width (int): Width of each images in the dataset
height (int): Height of each images in the dataset
"""
temp = cuda.shared.array(NB_THREADS_2D, dtype = uint32)
@ -152,10 +152,10 @@ def __transpose_3d__(X: np.ndarray) -> np.ndarray:
"""Transpose every images in the given dataset.
Args:
X (np.ndarray): Dataset of images.
X (np.ndarray): Dataset of images
Returns:
np.ndarray: Transposed dataset of images.
np.ndarray: Transposed dataset of images
"""
n_block_x, n_block_z = np.ceil(np.divide(X.shape[1:], NB_THREADS_2D)).astype(np.uint64)
d_X = cuda.to_device(X)
@ -167,10 +167,10 @@ def set_integral_image(X: np.ndarray) -> np.ndarray:
"""Transform the input images in integrated images (GPU version).
Args:
X (np.ndarray): Dataset of images.
X (np.ndarray): Dataset of images
Returns:
np.ndarray: Dataset of integrated images.
np.ndarray: Dataset of integrated images
"""
X = X.astype(np.uint32)
X = __scanGPU_3d__(X)
@ -184,13 +184,13 @@ def __train_weak_clf_kernel__(d_classifiers: np.ndarray, d_y: np.ndarray, d_X_fe
"""GPU kernel of the function train_weak_clf.
Args:
d_classifiers (np.ndarray): Weak classifiers to train.
d_y (np.ndarray): Labels of the features.
d_X_feat (np.ndarray): Feature images dataset.
d_X_feat_argsort (np.ndarray): Sorted indexes of the integrated features.
d_weights (np.ndarray): Weights of the features.
total_pos (float): Total of positive labels in the dataset.
total_neg (float): Total of negative labels in the dataset.
d_classifiers (np.ndarray): Weak classifiers to train
d_y (np.ndarray): Labels of the features
d_X_feat (np.ndarray): Feature images dataset
d_X_feat_argsort (np.ndarray): Sorted indexes of the integrated features
d_weights (np.ndarray): Weights of the features
total_pos (float): Total of positive labels in the dataset
total_neg (float): Total of negative labels in the dataset
"""
i = cuda.blockIdx.x * cuda.blockDim.x * cuda.blockDim.y * cuda.blockDim.z
i += cuda.threadIdx.x * cuda.blockDim.y * cuda.blockDim.z
@ -224,13 +224,13 @@ def train_weak_clf(X_feat: np.ndarray, X_feat_argsort: np.ndarray, y: np.ndarray
"""Train the weak classifiers on a given dataset (GPU version).
Args:
X_feat (np.ndarray): Feature images dataset.
X_feat_argsort (np.ndarray): Sorted indexes of the integrated features.
y (np.ndarray): Labels of the features.
weights (np.ndarray): Weights of the features.
X_feat (np.ndarray): Feature images dataset
X_feat_argsort (np.ndarray): Sorted indexes of the integrated features
y (np.ndarray): Labels of the features
weights (np.ndarray): Weights of the features
Returns:
np.ndarray: Trained weak classifiers.
np.ndarray: Trained weak classifiers
"""
total_pos, total_neg = weights[y == 1].sum(), weights[y == 0].sum()
d_classifiers = cuda.to_device(np.empty((X_feat.shape[0], 2), dtype = np.int32))
@ -247,14 +247,14 @@ def __compute_feature__(ii: np.ndarray, x: int, y: int, w: int, h: int) -> int:
"""Compute a feature on an integrated image at a specific coordinate (GPU version).
Args:
ii (np.ndarray): Integrated image.
x (int): X coordinate.
y (int): Y coordinate.
w (int): width of the feature.
h (int): height of the feature.
ii (np.ndarray): Integrated image
x (int): X coordinate
y (int): Y coordinate
w (int): width of the feature
h (int): height of the feature
Returns:
int: Computed feature.
int: Computed feature
"""
return ii[y + h, x + w] + ii[y, x] - ii[y + h, x] - ii[y, x + w]
@ -263,11 +263,11 @@ def __apply_feature_kernel__(X_feat: np.ndarray, feats: np.ndarray, X_ii: np.nda
"""GPU kernel of the function apply_features.
Args:
X_feat (np.ndarray): Feature images dataset.
feats (np.ndarray): Features to apply.
X_ii (np.ndarray): Integrated image dataset.
n (int): Number of features.
m (int): Number of images of the dataset.
X_feat (np.ndarray): Feature images dataset on device
feats (np.ndarray): Features on device to apply
X_ii (np.ndarray): Integrated image dataset on device
n (int): Number of features
m (int): Number of images of the dataset
"""
x, y = cuda.grid(2)
if x >= feats.shape[0] or y >= X_ii.shape[0]:
@ -288,11 +288,11 @@ def apply_features(feats: np.ndarray, X_ii: np.ndarray) -> np.ndarray:
"""Apply the features on a integrated image dataset (GPU version).
Args:
feats (np.ndarray): Features to apply.
X_ii (np.ndarray): Integrated image dataset.
feats (np.ndarray): Features to apply
X_ii (np.ndarray): Integrated image dataset
Returns:
np.ndarray: Applied features.
np.ndarray: Applied features
"""
d_X_feat = cuda.to_device(np.empty((feats.shape[0], X_ii.shape[0]), dtype = np.int32))
d_feats = cuda.to_device(feats)
@ -303,28 +303,44 @@ def apply_features(feats: np.ndarray, X_ii: np.ndarray) -> np.ndarray:
return d_X_feat.copy_to_host()
@cuda.jit('int32(int32[:], uint16[:], int32, int32)', device = True)
def as_partition(a: np.ndarray, indices: np.ndarray, l: int, h: int) -> int:
def _as_partition_(d_a: np.ndarray, d_indices: np.ndarray, l: int, h: int) -> int:
"""Partition of the argsort algorithm.
Args:
d_a (np.ndarray): Array on device to sort
d_indices (np.ndarray): Array of indices on device to write to
low (int): lower bound to sort
high (int): higher bound to sort
Returns:
int: Last index sorted
"""
i = l - 1
j = l
for j in range(l, h + 1):
if a[indices[j]] < a[indices[h]]:
if d_a[d_indices[j]] < d_a[d_indices[h]]:
i += 1
indices[i], indices[j] = indices[j], indices[i]
d_indices[i], d_indices[j] = d_indices[j], d_indices[i]
i += 1
indices[i], indices[j] = indices[j], indices[i]
d_indices[i], d_indices[j] = d_indices[j], d_indices[i]
return i
@cuda.jit('void(int32[:], uint16[:], int32, int32)', device = True)
def argsort_bounded(a: np.ndarray, indices: np.ndarray, l: int, h: int) -> None:
#total = h - l + 1;
stack = cuda.local.array(6977, int32)
stack[0] = l
stack[1] = h
top = 1;
def argsort_bounded(d_a: np.ndarray, d_indices: np.ndarray, low: int, high: int) -> None:
"""Perform an indirect sort of a given array within a given bound.
low = l
high = h
Args:
d_a (np.ndarray): Array on device to sort
d_indices (np.ndarray): Array of indices on device to write to
low (int): lower bound to sort
high (int): higher bound to sort
"""
#total = high - low + 1;
stack = cuda.local.array(6977, int32)
stack[0] = low
stack[1] = high
top = 1
while top >= 0:
high = stack[top]
@ -333,34 +349,49 @@ def argsort_bounded(a: np.ndarray, indices: np.ndarray, l: int, h: int) -> None:
top -= 1
if low >= high:
break;
break
p = as_partition(a, indices, low, high);
p = _as_partition_(d_a, d_indices, low, high)
if p - 1 > low:
top += 1
stack[top] = low;
stack[top] = low
top += 1
stack[top] = p - 1;
stack[top] = p - 1
if p + 1 < high:
top += 1
stack[top] = p + 1;
stack[top] = p + 1
top += 1
stack[top] = high;
stack[top] = high
@cuda.jit('void(int32[:, :], uint16[:, :])')
def argsort_flatter(X_feat: np.ndarray, indices: np.ndarray) -> None:
i = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x
if i < X_feat.shape[0]:
for j in range(indices.shape[1]):
indices[i, j] = j
argsort_bounded(X_feat[i], indices[i], 0, X_feat.shape[1] - 1)
def argsort_flatter(d_a: np.ndarray, d_indices: np.ndarray) -> None:
# TODO Finish doxygen
"""Cuda kernel where argsort is applied to every columns of a given 2D array.
def argsort(X_feat: np.ndarray) -> np.ndarray:
indices = np.empty_like(X_feat, dtype = np.uint16)
n_blocks = int(np.ceil(np.divide(X_feat.shape[0], NB_THREADS)))
d_X_feat = cuda.to_device(X_feat)
Args:
d_a (np.ndarray): Array in device to sort
d_indices (np.ndarray): Array of indices on device to write to
"""
i = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x
if i < d_a.shape[0]:
for j in range(d_indices.shape[1]):
d_indices[i, j] = j
argsort_bounded(d_a[i], d_indices[i], 0, d_a.shape[1] - 1)
def argsort(a: np.ndarray) -> np.ndarray:
"""Perform an indirect sort of a given array
Args:
a (np.ndarray): Array to sort
Returns:
np.ndarray: Array of indices that sort the array
"""
indices = np.empty_like(a, dtype = np.uint16)
n_blocks = int(np.ceil(np.divide(a.shape[0], NB_THREADS)))
d_X_feat = cuda.to_device(a)
d_indices = cuda.to_device(indices)
argsort_flatter[n_blocks, NB_THREADS](d_X_feat, d_indices)
cuda.synchronize()