Compare commits

..

11 Commits

Author SHA1 Message Date
saundersp
4a42747837 python : improved documentation 2024-04-28 22:35:42 +02:00
saundersp
c71b04f00d cpp : Added documentation 2024-04-28 22:11:33 +02:00
saundersp
f7ac38b93a python : added comment for potential indices in unit test 2024-04-28 00:26:31 +02:00
saundersp
434ce20374 python : updated requirements 2024-04-28 00:26:06 +02:00
saundersp
718724b63b python : Updated code with better display, documentation and format_time 2024-04-28 00:25:13 +02:00
saundersp
c7d21e1014 cpp : more robust code and added more documentation 2024-04-27 21:08:33 +02:00
saundersp
45f0f6ab8e Fixed incorrect filemode 2024-04-27 20:52:17 +02:00
saundersp
466fd0f782 Dockerized every modules 2024-04-27 20:51:36 +02:00
saundersp
226df0882c Makefiles : checking dependencies beforehand && added help text 2024-04-27 20:50:50 +02:00
saundersp
ff8142e678 Makefiles : python and cpp will not start without data downloaded by downloader first 2024-04-27 20:50:08 +02:00
saundersp
8740f7ea4b moved download_data.sh to seperate module downloader 2024-04-27 20:47:30 +02:00
45 changed files with 2145 additions and 1292 deletions

0
.gitignore vendored Executable file → Normal file
View File

0
README.fr.md Executable file → Normal file
View File

17
cpp/Dockerfile Normal file
View File

@ -0,0 +1,17 @@
FROM nvidia/cuda:12.4.1-devel-ubi9 as builder
WORKDIR /home/ViolaJones/cpp
COPY *.cu *.cpp *.hpp Makefile ./
RUN make -j "$(nproc)"
FROM nvidia/cuda:12.4.1-base-ubi9
WORKDIR /home/ViolaJones/cpp
RUN dnf install -y make-1:4.3-7.el9 && dnf clean all
COPY --from=builder /home/ViolaJones/cpp/bin ./bin
COPY Makefile .
ENTRYPOINT ["make"]
CMD ["start"]

View File

@ -1,79 +1,135 @@
CC := nvcc -m64 -std=c++17 -ccbin g++-12 -Xcompiler -m64,-std=c++17
CC := nvcc -m64 -t=0 -std=c++17 -Xcompiler -m64,-std=c++17
OBJ_DIR := bin
$(shell mkdir -p $(OBJ_DIR))
MODELS_DIR := models
OUT_DIR := out
SRC_DIR := .
#CFLAGS := -O0 -Werror=all-warnings -g -G
#CFLAGS := $(CFLAGS) -pg
#CFLAGS := $(CFLAGS) -Xptxas=-w
#CFLAGS := $(CFLAGS) -Xcompiler -Wall,-O0,-g,-Werror,-Werror=implicit-fallthrough=0,-Wextra,-rdynamic
CFLAGS := -O4 -Xcompiler -O4
DATA_PATH := ../data
#CFLAGS := -O0 -g -G -Xptxas=-w -Xcompiler -O0,-rdynamic,-g
#CFLAGS := -O0 -g -G -pg -Xptxas=-w -Xcompiler -O0,-rdynamic,-g
CFLAGS := -dlto -O2 -Xcompiler -O2
#CFLAGS := -dlto -O2 -g -Xcompiler -O2,-g,-ggdb
CFLAGS := $(CFLAGS) -MMD -MP -Werror=all-warnings -Xcompiler -Wall,-Werror,-Werror=implicit-fallthrough=0,-Wextra
EXEC := $(OBJ_DIR)/ViolaJones
DATA := ../data/X_train.bin ../data/X_test.bin ../data/y_train.bin ../data/y_test.bin
SRC := $(shell find $(SRC_DIR) -name "*.cpp" -o -name "*.cu" )
DATA := $(DATA_PATH)/X_train.bin $(DATA_PATH)/X_test.bin $(DATA_PATH)/y_train.bin $(DATA_PATH)/y_test.bin
SRC := $(shell find $(SRC_DIR) -name '*.cpp' -o -name '*.cu')
OBJ_EXT := o
ifeq ($(OS), Windows_NT)
EXEC:=$(EXEC).exe
OBJ_EXT:=obj
EXEC := $(EXEC).exe
OBJ_EXT := obj
endif
OBJ := $(SRC:$(SRC_DIR)/%.cpp=$(OBJ_DIR)/%.$(OBJ_EXT))
OBJ := $(OBJ:$(SRC_DIR)/%.cu=$(OBJ_DIR)/%.$(OBJ_EXT))
.PHONY: all start reset clean mrproper debug check
.PHONY: all
all: $(EXEC)
all: $(EXEC) $(DATA)
$(OBJ_DIR):
@mkdir -v $@
# Compiling host code
$(OBJ_DIR)/%.$(OBJ_EXT): $(SRC_DIR)/%.cpp
$(OBJ_DIR)/%.$(OBJ_EXT): $(SRC_DIR)/%.cpp | $(OBJ_DIR) check-nvcc-works
@echo Compiling $<
@$(CC) $(CFLAGS) -c $< -o $@
# Compiling gpu code
$(OBJ_DIR)/%.$(OBJ_EXT): $(SRC_DIR)/%.cu
$(OBJ_DIR)/%.$(OBJ_EXT): $(SRC_DIR)/%.cu | $(OBJ_DIR) check-nvcc-works
@echo Compiling $<
@$(CC) $(CFLAGS) -c $< -o $@
$(EXEC): $(OBJ)
$(EXEC): $(OBJ) | check-nvcc-works
@echo Linking objects files to $@
@$(CC) $(CFLAGS) $^ -o $@
$(DATA):
@bash ../download_data.sh ..
@echo 'Missing $(DATA) files, use downloader first' && exit 1
.PHONY: start
start: $(EXEC) $(DATA)
@./$(EXEC)
profile: start
@gprof $(EXEC) gmon.out | gprof2dot | dot -Tpng -o output.png
#@gprof $(EXEC) gmon.out > analysis.txt
.PHONY: debug
debug: $(EXEC) $(DATA)
#@cuda-gdb -q $(EXEC)
@gdb -q --tui $(EXEC)
check: $(EXEC) $(DATA)
.PHONY: profile
profile: start | check-gprof-works check-gprof2dot-works check-dot-works
@gprof $(EXEC) gmon.out | gprof2dot | dot -T png -o output.png
.PHONY: check
check: $(EXEC) $(DATA) | check-valgrind-works
@valgrind -q -s --leak-check=full --show-leak-kinds=all $(EXEC)
cudacheck: $(EXEC) $(DATA)
@cuda-memcheck --destroy-on-device-error kernel --tool memcheck --leak-check full --report-api-errors all $(EXEC)
#@cuda-memcheck --destroy-on-device-error kernel --tool racecheck --racecheck-report all $(EXEC)
#@cuda-memcheck --destroy-on-device-error kernel --tool initcheck --track-unused-memory yes $(EXEC)
#@cuda-memcheck --destroy-on-device-error kernel --tool synccheck $(EXEC)
#@compute-sanitizer --destroy-on-device-error kernel --tool memcheck --leak-check full --report-api-errors all --track-stream-ordered-races all $(EXEC)
#@compute-sanitizer --destroy-on-device-error kernel --tool racecheck --racecheck-detect-level info --racecheck-report all $(EXEC)
#@compute-sanitizer --destroy-on-device-error kernel --tool initcheck --track-unused-memory yes $(EXEC)
#@compute-sanitizer --destroy-on-device-error kernel --tool synccheck $(EXEC)
.PHONY: cudacheck
cudacheck: $(EXEC) $(DATA) | check-computer-sanitizer-works
@compute-sanitizer --destroy-on-device-error kernel --tool memcheck --leak-check full --report-api-errors all --track-stream-ordered-races all --target-processes all $(EXEC)
#@compute-sanitizer --destroy-on-device-error kernel --tool racecheck --racecheck-detect-level info --racecheck-report all $(EXEC)
#@compute-sanitizer --destroy-on-device-error kernel --tool initcheck --track-unused-memory yes $(EXEC)
#@compute-sanitizer --destroy-on-device-error kernel --tool synccheck $(EXEC)
r2: $(EXEC) $(DATA)
@r2 $(EXEC)
.PHONY: log
log: $(DATA) reset
@echo 'Building GPU'
@sed -i 's/GPU_BOOSTED false/GPU_BOOSTED true/' config.hpp
@make -s -j "$(shell nproc)"
@echo 'Logging GPU'
@make -s start > log_gpu
@echo 'Building CPU'
@sed -i 's/GPU_BOOSTED true/GPU_BOOSTED false/' config.hpp
@make -s -j "$(shell nproc)"
@echo 'Logging CPU'
@make -s start > log_cpu
@sed -i 's/GPU_BOOSTED false/GPU_BOOSTED true/' config.hpp
@echo 'Cleaning up'
@make -s reset
.PHONY: reset
reset:
@echo Deleting generated states and models
@rm -rf $(OUT_DIR)/* $(MODELS_DIR)/* | true
@echo 'Deleting generated states and models'
@rm -frv $(OUT_DIR)/* $(MODELS_DIR)/*
#@ln -sv /mnt/pierre_stuffs/ViolaJones/cpp/models .
#@ln -sv /mnt/pierre_stuffs/ViolaJones/cpp/out .
.PHONY: clean
clean:
@rm $(EXEC)
@rm -fv $(EXEC) log_gpu log_cpu
mrproper:
@rm -r $(OBJ_DIR)
.PHONY: mrproper
mrproper: clean
@rm -rfv $(OBJ_DIR) gmon.out
.PHONY: help
help:
@echo "Available targets:"
@echo "\tall: alias for start, (default target)"
@echo "\tstart: Start the ViolaJones algorithm, require data beforehand downloaded by the downloader."
@echo "\tdebug: Debug the ViolaJones algorithm, require data beforehand downloaded by the downloader."
@echo "\tprofile: Profile the ViolaJones algorithm functions timestamps, require data beforehand downloaded by the downloader."
@echo "\treset: Will delete any saved models and processed data made by ViolaJones."
@echo "\tmrproper: Will remove cpp binary files. Will execute reset target beforehand."
.PHONY: check-nvcc-works
check-nvcc-works:
@nvcc --version >/dev/null 2>&1 || (echo 'Please install NVIDIA Cuda compiler.' && exit 1)
.PHONY: check-gprof-works
check-gprof-works:
@gprof --version >/dev/null 2>&1 || (echo 'Please install GNU gprof.' && exit 1)
.PHONY: check-gprof2dot-works
check-gprof2dot-works:
@gprof2dot --help >/dev/null 2>&1 || (echo 'Please install gprof2dot.' && exit 1)
.PHONY: check-dot-works
check-dot-works:
@dot --version >/dev/null 2>&1 || (echo 'Please install dot from graphviz.' && exit 1)
.PHONY: check-valgrind-works
check-valgrind-works:
@valgrind --version >/dev/null 2>&1 || (echo 'Please install valgrind.' && exit 1)
.PHONY: check-computer-sanitizer-works
check-computer-sanitizer-works:
@computer-sanitizer --version >/dev/null 2>&1 || (echo 'Please install Compute Sanitizer from Cuda toolkit.' && exit 1)
-include $(OBJ:.o=.d)

View File

@ -1,56 +1,61 @@
#include <cmath>
#include "data.hpp"
#include "config.hpp"
#include "ViolaJonesGPU.hpp"
#include "ViolaJonesCPU.hpp"
#include "ViolaJones_device.hpp"
static inline void add_empty_feature(const np::Array<uint8_t>& feats, size_t& n) noexcept {
constexpr static inline void add_empty_feature(const np::Array<uint8_t>& feats, size_t& n) noexcept {
memset(&feats[n], 0, 4 * sizeof(uint8_t));
n += 4;
}
static inline void add_right_feature(const np::Array<uint8_t>& feats, size_t& n, const uint16_t& i, const uint16_t& j, const uint16_t& w, const uint16_t& h) noexcept {
constexpr static inline void add_right_feature(const np::Array<uint8_t>& feats, size_t& n, const uint16_t& i, const uint16_t& j, const uint16_t& w, const uint16_t& h) noexcept {
feats[n++] = i + w;
feats[n++] = j;
feats[n++] = w;
feats[n++] = h;
}
static inline void add_immediate_feature(const np::Array<uint8_t>& feats, size_t& n, const uint16_t& i, const uint16_t& j, const uint16_t& w, const uint16_t& h) noexcept {
constexpr static inline void add_immediate_feature(const np::Array<uint8_t>& feats, size_t& n, const uint16_t& i, const uint16_t& j, const uint16_t& w, const uint16_t& h) noexcept {
feats[n++] = i;
feats[n++] = j;
feats[n++] = w;
feats[n++] = h;
}
static inline void add_bottom_feature(const np::Array<uint8_t>& feats, size_t& n, const uint16_t& i, const uint16_t& j, const uint16_t& w, const uint16_t& h) noexcept {
constexpr static inline void add_bottom_feature(const np::Array<uint8_t>& feats, size_t& n, const uint16_t& i, const uint16_t& j, const uint16_t& w, const uint16_t& h) noexcept {
feats[n++] = i;
feats[n++] = j + h;
feats[n++] = w;
feats[n++] = h;
}
static inline void add_right2_feature(const np::Array<uint8_t>& feats, size_t& n, const uint16_t& i, const uint16_t& j, const uint16_t& w, const uint16_t& h) noexcept {
constexpr static inline void add_right2_feature(const np::Array<uint8_t>& feats, size_t& n, const uint16_t& i, const uint16_t& j, const uint16_t& w, const uint16_t& h) noexcept {
feats[n++] = i + 2 * w;
feats[n++] = j;
feats[n++] = w;
feats[n++] = h;
}
static inline void add_bottom2_feature(const np::Array<uint8_t>& feats, size_t& n, const uint16_t& i, const uint16_t& j, const uint16_t& w, const uint16_t& h) noexcept {
constexpr static inline void add_bottom2_feature(const np::Array<uint8_t>& feats, size_t& n, const uint16_t& i, const uint16_t& j, const uint16_t& w, const uint16_t& h) noexcept {
feats[n++] = i;
feats[n++] = j + 2 * h;
feats[n++] = w;
feats[n++] = h;
}
static inline void add_bottom_right_feature(const np::Array<uint8_t>& feats, size_t& n, const uint16_t& i, const uint16_t& j, const uint16_t& w, const uint16_t& h) noexcept {
constexpr static inline void add_bottom_right_feature(const np::Array<uint8_t>& feats, size_t& n, const uint16_t& i, const uint16_t& j, const uint16_t& w, const uint16_t& h) noexcept {
feats[n++] = i + w;
feats[n++] = j + h;
feats[n++] = w;
feats[n++] = h;
}
/**
* @brief Initialize the features based on the input shape.
*
* @param width Width of the image
* @param height Height of the image
* @return The initialized features
*/
np::Array<uint8_t> build_features(const uint16_t& width, const uint16_t& height) noexcept {
size_t n = 0;
uint16_t w, h, i, j;
@ -110,11 +115,11 @@ np::Array<uint8_t> build_features(const uint16_t& width, const uint16_t& height)
return feats;
}
//np::Array<int> select_percentile(const np::Array<uint8_t> X_feat, const np::Array<uint8_t> y) noexcept {
//np::Array<int32_t> select_percentile(const np::Array<uint8_t> X_feat, const np::Array<uint8_t> y) noexcept {
// std::vector<float64_t> class_0, class_1;
//
// const int im_size = X_feat.shape[0] / y.shape[0];
// int idy = 0, n_samples_per_class_0 = 0, n_samples_per_class_1 = 0;
// const int32_t im_size = X_feat.shape[0] / y.shape[0];
// int32_t idy = 0, n_samples_per_class_0 = 0, n_samples_per_class_1 = 0;
// for (size_t i = 0; i < X_feat.shape[0]; i += im_size) {
// if (y[idy] == 0) {
// ++n_samples_per_class_0;
@ -126,24 +131,24 @@ np::Array<uint8_t> build_features(const uint16_t& width, const uint16_t& height)
// }
// ++idy;
// }
// const int n_samples = n_samples_per_class_0 + n_samples_per_class_1;
// const int32_t n_samples = n_samples_per_class_0 + n_samples_per_class_1;
//
// float64_t ss_alldata_0 = 0;
// for (int i = 0;i < n_samples_per_class_0;++i)
// for (int32_t i = 0;i < n_samples_per_class_0;++i)
// ss_alldata_0 += (class_0[i] * class_0[i]);
//
// float64_t ss_alldata_1 = 0;
// for (int i = 0;i < n_samples_per_class_1;++i)
// for (int32_t i = 0;i < n_samples_per_class_1;++i)
// ss_alldata_1 += (class_1[i] * class_1[i]);
//
// const float64_t ss_alldata = ss_alldata_0 + ss_alldata_1;
//
// float64_t sums_classes_0 = 0;
// for (int i = 0;i < n_samples_per_class_0;++i)
// for (int32_t i = 0;i < n_samples_per_class_0;++i)
// sums_classes_0 += class_0[i];
//
// float64_t sums_classes_1 = 0;
// for (int i = 0;i < n_samples_per_class_1;++i)
// for (int32_t i = 0;i < n_samples_per_class_1;++i)
// sums_classes_1 += class_1[i];
//
// float64_t sq_of_sums_alldata = sums_classes_0 + sums_classes_1;
@ -154,15 +159,21 @@ np::Array<uint8_t> build_features(const uint16_t& width, const uint16_t& height)
// const float64_t ss_tot = ss_alldata - sq_of_sums_alldata / n_samples;
// const float64_t sqd_sum_bw_n = sq_of_sums_args_0 / n_samples_per_class_0 + sq_of_sums_args_1 / n_samples_per_class_1 - sq_of_sums_alldata / n_samples;
// const float64_t ss_wn = ss_tot - sqd_sum_bw_n;
// const int df_wn = n_samples - 2;
// const int32_t df_wn = n_samples - 2;
// const float64_t msw = ss_wn / df_wn;
// const float64_t f_values = sqd_sum_bw_n / msw;
//
// const np::Array<int> res = np::empty<int>({ static_cast<size_t>(std::ceil(static_cast<float64_t>(im_size) / 10.0)) });
// const np::Array<int32_t> res = np::empty<int32_t>({ static_cast<size_t>(std::ceil(static_cast<float64_t>(im_size) / 10.0)) });
// // TODO Complete code
// return res;
//}
/**
* @brief Initialize the weights of the weak classifiers based on the training labels.
*
* @param y_train Training labels
* @return The initialized weights
*/
np::Array<float64_t> init_weights(const np::Array<uint8_t>& y_train) noexcept {
np::Array<float64_t> weights = np::empty<float64_t>(y_train.shape);
const uint16_t t = np::sum(np::astype<uint16_t>(y_train));
@ -172,13 +183,30 @@ np::Array<float64_t> init_weights(const np::Array<uint8_t>& y_train) noexcept {
}));
}
np::Array<uint8_t> classify_weak_clf(const np::Array<int32_t>& X_feat_i, const size_t& j, const float64_t& threshold, const float64_t& polarity) noexcept {
/**
* @brief Classify the integrated features based on polarity and threshold.
*
* @param X_feat_i Integrated features
* @param j Index of the classifier
* @param threshold Trained threshold
* @param polarity Trained polarity
* @return Classified features
*/
static np::Array<uint8_t> classify_weak_clf(const np::Array<int32_t>& X_feat_i, const size_t& j, const float64_t& threshold, const float64_t& polarity) noexcept {
np::Array<uint8_t> res = np::empty<uint8_t>({ X_feat_i.shape[1] });
for(size_t i = 0; i < res.shape[0]; ++i)
res[i] = polarity * X_feat_i[j * X_feat_i.shape[1] + i] < polarity * threshold ? 1 : 0;
return res;
}
/**
* @brief Classify the trained classifiers on the given features.
*
* @param alphas Trained alphas
* @param classifiers Trained classifiers
* @param X_feat integrated features
* @return Classification results
*/
np::Array<uint8_t> classify_viola_jones(const np::Array<float64_t>& alphas, const np::Array<float64_t>& classifiers, const np::Array<int32_t>& X_feat) noexcept {
np::Array<float64_t> total = np::zeros<float64_t>({ X_feat.shape[1] });
@ -199,6 +227,15 @@ np::Array<uint8_t> classify_viola_jones(const np::Array<float64_t>& alphas, cons
return y_pred;
}
/**
* @brief Select the best classifer given their predictions.
*
* @param classifiers The weak classifiers
* @param weights Trained weights of each classifiers
* @param X_feat Integrated features
* @param y Features labels
* @return Index of the best classifier, the best error and the best accuracy
*/
std::tuple<int32_t, float64_t, np::Array<float64_t>> select_best(const np::Array<float64_t>& classifiers, const np::Array<float64_t>& weights, const np::Array<int32_t>& X_feat, const np::Array<uint8_t>& y) noexcept {
std::tuple<int32_t, float64_t, np::Array<float64_t>> res = { -1, np::inf, np::empty<float64_t>({ X_feat.shape[0] }) };
@ -216,6 +253,15 @@ std::tuple<int32_t, float64_t, np::Array<float64_t>> select_best(const np::Array
return res;
}
/**
* @brief Train the weak calssifiers.
*
* @param T Number of weak classifiers
* @param X_feat Integrated features
* @param X_feat_argsort Sorted indexes of the integrated features
* @param y Features labels
* @return List of trained alphas and the list of the final classifiers
*/
std::array<np::Array<float64_t>, 2> train_viola_jones(const size_t& T, const np::Array<int32_t>& X_feat, const np::Array<uint16_t>& X_feat_argsort, const np::Array<uint8_t>& y) noexcept {
np::Array<float64_t> weights = init_weights(y);
np::Array<float64_t> alphas = np::empty<float64_t>({ T });
@ -223,11 +269,7 @@ std::array<np::Array<float64_t>, 2> train_viola_jones(const size_t& T, const np:
for(size_t t = 0; t < T; ++t ){
weights /= np::sum(weights);
#if GPU_BOOSTED
const np::Array<float64_t> classifiers = train_weak_clf_gpu(X_feat, X_feat_argsort, y, weights);
#else
const np::Array<float64_t> classifiers = train_weak_clf_cpu(X_feat, X_feat_argsort, y, weights);
#endif
const np::Array<float64_t> classifiers = train_weak_clf(X_feat, X_feat_argsort, y, weights);
const auto [ clf, error, accuracy ] = select_best(classifiers, weights, X_feat, y);
float64_t beta = error / (1.0 - error);
weights *= np::pow(beta, (1.0 - accuracy));
@ -239,6 +281,13 @@ std::array<np::Array<float64_t>, 2> train_viola_jones(const size_t& T, const np:
return { alphas, final_classifier };
}
/**
* @brief Compute the accuracy score i.e. how a given set of measurements are close to their true value.
*
* @param y Ground truth labels
* @param y_pred Predicted labels
* @return computed accuracy score
*/
float64_t accuracy_score(const np::Array<uint8_t>& y, const np::Array<uint8_t>& y_pred) noexcept {
float64_t res = 0.0;
for(size_t i = 0; i < y.shape[0]; ++i)
@ -247,6 +296,13 @@ float64_t accuracy_score(const np::Array<uint8_t>& y, const np::Array<uint8_t>&
return res / y.shape[0];
}
/**
* @brief Compute the precision score i.e. how a given set of measurements are close to each other.
*
* @param y Ground truth labels
* @param y_pred Predicted labels
* @return computed precision score
*/
float64_t precision_score(const np::Array<uint8_t>& y, const np::Array<uint8_t>& y_pred) noexcept {
uint16_t true_positive = 0, false_positive = 0;
for(size_t i = 0; i < y.shape[0]; ++i)
@ -259,6 +315,13 @@ float64_t precision_score(const np::Array<uint8_t>& y, const np::Array<uint8_t>&
return static_cast<float64_t>(true_positive) / (true_positive + false_positive);
}
/**
* @brief Compute the recall score i.e. the ratio (TP / (TP + FN)) where TP is the number of true positives and FN the number of false negatives.
*
* @param y Ground truth labels
* @param y_pred Predicted labels
* @return computed recall score
*/
float64_t recall_score(const np::Array<uint8_t>& y, const np::Array<uint8_t>& y_pred) noexcept {
uint16_t true_positive = 0, false_negative = 0;
for(size_t i = 0; i < y.shape[0]; ++i)
@ -272,12 +335,35 @@ float64_t recall_score(const np::Array<uint8_t>& y, const np::Array<uint8_t>& y_
return static_cast<float64_t>(true_positive) / (true_positive + false_negative);
}
/**
* @brief Compute the F1 score aka balanced F-score or F-measure.
*
* F1 = (2 * TP) / (2 * TP + FP + FN)
* where TP is the true positives,
* FP is the false positives,
* and FN is the false negatives
*
* @param y Ground truth labels
* @param y_pred Predicted labels
* @return computed F1 score
*/
float64_t f1_score(const np::Array<uint8_t>& y, const np::Array<uint8_t>& y_pred) noexcept {
const float64_t precision = precision_score(y, y_pred);
const float64_t recall = recall_score(y, y_pred);
return 2 * (precision * recall) / (precision + recall);
}
/**
* @brief Compute the confusion matrix to evaluate a given classification.
*
* A confusion matrix of a binary classification consists of a 2x2 matrix containing
* | True negatives | False positives |
* | False negatives | True positives |
*
* @param y Ground truth labels
* @param y_pred Predicted labels
* @return computed confusion matrix
*/
std::tuple<uint16_t, uint16_t, uint16_t, uint16_t> confusion_matrix(const np::Array<uint8_t>& y, const np::Array<uint8_t>& y_pred) noexcept {
uint16_t true_positive = 0, false_positive = 0, true_negative = 0, false_negative = 0;
for(size_t i = 0; i < y.shape[0]; ++i)
@ -293,4 +379,3 @@ std::tuple<uint16_t, uint16_t, uint16_t, uint16_t> confusion_matrix(const np::Ar
++false_positive;
return std::make_tuple(true_negative, false_positive, false_negative, true_positive);
}

View File

@ -2,8 +2,15 @@
#include <filesystem>
#include "data.hpp"
#include "toolbox.hpp"
//#include "config.hpp"
/**
* @brief Test if a array from a CPU computation is equal to a GPU computation equivalent.
*
* @tparam T Inner type of the arrays to test
* @param cpu CPU Array
* @param gpu GPU Array
* @return Whether the test was succesful
*/
template <typename T>
bool unit_test_cpu_vs_gpu(const np::Array<T>& cpu, const np::Array<T>& gpu) noexcept {
if (cpu.shape != gpu.shape) {
@ -27,6 +34,14 @@ bool unit_test_cpu_vs_gpu(const np::Array<T>& cpu, const np::Array<T>& gpu) noex
return eq == length;
}
/**
* @brief Test if a given 2D array of indices sort a given 2D array
*
* @tparam T Inner type of the array to test
* @param a 2D Array of data
* @param indices 2D Indices that sort the array
* @return Whether the test was successful
*/
template <typename T>
bool unit_test_argsort_2d(const np::Array<T>& a, const np::Array<uint16_t>& indices) noexcept {
if (a.shape != indices.shape) {
@ -51,6 +66,18 @@ bool unit_test_argsort_2d(const np::Array<T>& a, const np::Array<uint16_t>& indi
return correct == total;
}
/**
* @brief Benchmark a function and display the result in stdout.
*
* @tparam T Resulting type of the function to benchmark
* @tparam F Signature of the function to call
* @tparam Args Arguments variadic of the function to call
* @param step_name Name of the function to log
* @param column_width Width of the column to print during logging
* @param fnc Function to benchmark
* @param args Arguments to pass to the function to call
* @return Result of the benchmarked function
*/
template <typename T, typename F, typename... Args>
T benchmark_function(const char* const step_name, const int32_t& column_width, const F& fnc, Args &&...args) noexcept {
#if __DEBUG == false
@ -64,6 +91,16 @@ T benchmark_function(const char* const step_name, const int32_t& column_width, c
return res;
}
/**
* @brief Benchmark a function and display the result in stdout.
*
* @tparam F Signature of the function to call
* @tparam Args Arguments variadic of the function to call
* @param step_name Name of the function to log
* @param column_width Width of the column to print during logging
* @param fnc Function to benchmark
* @param args Arguments to pass to the function to call
*/
template <typename F, typename... Args>
void benchmark_function_void(const char* const step_name, const int32_t& column_width, const F& fnc, Args &&...args) noexcept {
#if __DEBUG == false
@ -76,6 +113,22 @@ void benchmark_function_void(const char* const step_name, const int32_t& column_
formatted_row<3>({ column_width, -18, 29 }, { step_name, thousand_sep(time_spent).c_str(), format_time_ns(time_spent).c_str() });
}
/**
* @brief Either execute a function then save the result or load the already cached result.
*
* @tparam T Inner type of the resulting array
* @tparam F Signature of the function to call
* @tparam Args Arguments variadic of the function to call
* @param step_name Name of the function to log
* @param column_width Width of the column to print during logging
* @param filename Name of the filename where the result is saved
* @param force_redo Recall the function even if the result is already saved, ignored if result is not cached
* @param save_state Whether the computed result will be saved or not, ignore if loading already cached result
* @param out_dir Path of the directory to save the result
* @param fnc Function to call
* @param args Arguments to pass to the function to call
* @return The result of the called function
*/
template <typename T, typename F, typename... Args>
np::Array<T> state_saver(const char* const step_name, const int32_t& column_width, const char* const filename, const bool& force_redo, const bool& save_state, const char* const out_dir, const F& fnc, Args &&...args) noexcept {
char filepath[BUFFER_SIZE] = { 0 };
@ -83,7 +136,6 @@ np::Array<T> state_saver(const char* const step_name, const int32_t& column_widt
np::Array<T> bin;
if (!std::filesystem::exists(filepath) || force_redo) {
//bin = std::move(benchmark_function<np::Array<T>>(step_name, column_width, fnc, std::forward<Args>(args)...));
bin = benchmark_function<np::Array<T>>(step_name, column_width, fnc, std::forward<Args>(args)...);
if(save_state){
#if __DEBUG == false
@ -101,20 +153,35 @@ np::Array<T> state_saver(const char* const step_name, const int32_t& column_widt
fprintf(stderr, "Loading results of %s\r", step_name);
fflush(stderr);
#endif
//bin = std::move(load<T>(filepath));
bin = load<T>(filepath);
formatted_row<3>({ column_width, -18, 29 }, { step_name, "None", "loaded saved state" });
}
return bin;
}
/**
* @brief Either execute a function then saves the results or load the already cached result.
*
* @tparam T Inner type of the resulting arrays
* @tparam F Signature of the function to call
* @tparam Args Arguments variadic of the function to call
* @param step_name Name of the function to log
* @param column_width Width of the column to print during logging
* @param filenames List of names of the filenames where the results are save
* @param force_redo Recall the function even if the results are already saved, ignored if results are not cached
* @param save_state Whether the computed results will be saved or not, ignored if loading already cached results
* @param out_dir Path of the directory to save the results
* @param fnc Function to call
* @param args Arguments to pass to the function to call
* @return The results of the called function
*/
template <typename T, size_t N, typename F, typename... Args>
std::array<np::Array<T>, N> state_saver(const char* const step_name, const int32_t& column_width, const std::vector<const char*>& filenames, const bool& force_redo, const bool& save_state, const char* const out_dir, const F& fnc, Args &&...args) noexcept {
char filepath[BUFFER_SIZE] = { 0 };
bool abs = false;
for (const char* filename : filenames){
sprintf(filepath, "%s/%s.bin", out_dir, filename);
if (!fs::exists(filepath)) {
for (const char* const filename : filenames){
snprintf(filepath, BUFFER_SIZE, "%s/%s.bin", out_dir, filename);
if (!std::filesystem::exists(filepath)) {
abs = true;
break;
}
@ -122,7 +189,6 @@ std::array<np::Array<T>, N> state_saver(const char* const step_name, const int32
std::array<np::Array<T>, N> bin;
if (abs || force_redo) {
//bin = std::move(benchmark_function<std::array<np::Array<T>, N>>(step_name, column_width, fnc, std::forward<Args>(args)...));
bin = benchmark_function<std::array<np::Array<T>, N>>(step_name, column_width, fnc, std::forward<Args>(args)...);
if (save_state){
#if __DEBUG == false
@ -130,8 +196,8 @@ std::array<np::Array<T>, N> state_saver(const char* const step_name, const int32
fflush(stderr);
#endif
size_t i = 0;
for (const char* filename : filenames){
sprintf(filepath, "%s/%s.bin", out_dir, filename);
for (const char* const filename : filenames){
snprintf(filepath, BUFFER_SIZE, "%s/%s.bin", out_dir, filename);
save<T>(bin[i++], filepath);
}
#if __DEBUG == false
@ -145,25 +211,116 @@ std::array<np::Array<T>, N> state_saver(const char* const step_name, const int32
fflush(stderr);
#endif
size_t i = 0;
for (const char* filename : filenames){
bin[i++] = std::move(load<T>(filepath));
for (const char* const filename : filenames){
snprintf(filepath, BUFFER_SIZE, "%s/%s.bin", out_dir, filename);
bin[i++] = load<T>(filepath);
}
formatted_row<3>({ column_width, -18, 29 }, { step_name, "None", "loaded saved state" });
}
return bin;
}
np::Array<uint16_t> argsort_2d_cpu(const np::Array<int32_t>&) noexcept;
/**
* @brief Initialize the features based on the input shape.
*
* @param width Width of the image
* @param height Height of the image
* @return The initialized features
*/
np::Array<uint8_t> build_features(const uint16_t&, const uint16_t&) noexcept;
np::Array<int> select_percentile(const np::Array<uint8_t>&, const np::Array<uint8_t>&) noexcept;
//np::Array<int32_t> select_percentile(const np::Array<uint8_t>&, const np::Array<uint8_t>&) noexcept;
/**
* @brief Classify the trained classifiers on the given features.
*
* @param alphas Trained alphas
* @param classifiers Trained classifiers
* @param X_feat integrated features
* @return Classification results
*/
np::Array<uint8_t> classify_viola_jones(const np::Array<float64_t>&, const np::Array<float64_t>&, const np::Array<int32_t>&) noexcept;
/**
* @brief Initialize the weights of the weak classifiers based on the training labels.
*
* @param y_train Training labels
* @return The initialized weights
*/
np::Array<float64_t> init_weights(const np::Array<uint8_t>&) noexcept;
/**
* @brief Select the best classifer given their predictions.
*
* @param classifiers The weak classifiers
* @param weights Trained weights of each classifiers
* @param X_feat Integrated features
* @param y Features labels
* @return Index of the best classifier, the best error and the best accuracy
*/
std::tuple<int32_t, float64_t, np::Array<float64_t>> select_best(const np::Array<float64_t>&, const np::Array<float64_t>&, const np::Array<int32_t>&,
const np::Array<uint8_t>&) noexcept;
/**
* @brief Train the weak calssifiers.
*
* @param T Number of weak classifiers
* @param X_feat Integrated features
* @param X_feat_argsort Sorted indexes of the integrated features
* @param y Features labels
* @return List of trained alphas and the list of the final classifiers
*/
std::array<np::Array<float64_t>, 2> train_viola_jones(const size_t&, const np::Array<int32_t>&, const np::Array<uint16_t>&, const np::Array<uint8_t>&) noexcept;
/**
* @brief Compute the accuracy score i.e. how a given set of measurements are close to their true value.
*
* @param y Ground truth labels
* @param y_pred Predicted labels
* @return computed accuracy score
*/
float64_t accuracy_score(const np::Array<uint8_t>&, const np::Array<uint8_t>&) noexcept;
/**
* @brief Compute the precision score i.e. how a given set of measurements are close to each other.
*
* @param y Ground truth labels
* @param y_pred Predicted labels
* @return computed precision score
*/
float64_t precision_score(const np::Array<uint8_t>&, const np::Array<uint8_t>&) noexcept;
/**
* @brief Compute the recall score i.e. the ratio (TP / (TP + FN)) where TP is the number of true positives and FN the number of false negatives.
*
* @param y Ground truth labels
* @param y_pred Predicted labels
* @return computed recall score
*/
float64_t recall_score(const np::Array<uint8_t>&, const np::Array<uint8_t>&) noexcept;
/**
* @brief Compute the F1 score aka balanced F-score or F-measure.
*
* F1 = (2 * TP) / (2 * TP + FP + FN)
* where TP is the true positives,
* FP is the false positives,
* and FN is the false negatives
*
* @param y Ground truth labels
* @param y_pred Predicted labels
* @return computed F1 score
*/
float64_t f1_score(const np::Array<uint8_t>&, const np::Array<uint8_t>&) noexcept;
/**
* @brief Compute the confusion matrix to evaluate a given classification.
*
* A confusion matrix of a binary classification consists of a 2x2 matrix containing
* | True negatives | False positives |
* | False negatives | True positives |
*
* @param y Ground truth labels
* @param y_pred Predicted labels
* @return computed confusion matrix
*/
std::tuple<uint16_t, uint16_t, uint16_t, uint16_t> confusion_matrix(const np::Array<uint8_t>&, const np::Array<uint8_t>&) noexcept;

View File

@ -1,7 +1,15 @@
#include "data.hpp"
#include "toolbox.hpp"
#include "config.hpp"
np::Array<uint32_t> set_integral_image_cpu(const np::Array<uint8_t>& set) noexcept {
#if GPU_BOOSTED == false
/**
* @brief Transform the input images in integrated images (CPU version).
*
* @param X Dataset of images
* @return Dataset of integrated images
*/
np::Array<uint32_t> set_integral_image(const np::Array<uint8_t>& set) noexcept {
np::Array<uint32_t> X_ii = np::empty<uint32_t>(set.shape);
size_t i, y, x, s;
@ -31,7 +39,14 @@ constexpr static inline int16_t __compute_feature__(const np::Array<uint32_t>& X
return X_ii[j + _yh + w] + X_ii[j + _y] - X_ii[j + _yh] - X_ii[j + _y + w];
}
np::Array<int32_t> apply_features_cpu(const np::Array<uint8_t>& feats, const np::Array<uint32_t>& X_ii) noexcept {
/**
* @brief Apply the features on a integrated image dataset (CPU version).
*
* @param feats Features to apply
* @param X_ii Integrated image dataset
* @return Applied features
*/
np::Array<int32_t> apply_features(const np::Array<uint8_t>& feats, const np::Array<uint32_t>& X_ii) noexcept {
np::Array<int32_t> X_feat = np::empty<int32_t>({ feats.shape[0], X_ii.shape[0] });
size_t j, feat_idx = 0;
@ -51,7 +66,7 @@ np::Array<int32_t> apply_features_cpu(const np::Array<uint8_t>& feats, const np:
return X_feat;
}
np::Array<float64_t> train_weak_clf_cpu(const np::Array<int32_t>& X_feat, const np::Array<uint16_t>& X_feat_argsort, const np::Array<uint8_t>& y, const np::Array<float64_t>& weights) noexcept {
np::Array<float64_t> train_weak_clf(const np::Array<int32_t>& X_feat, const np::Array<uint16_t>& X_feat_argsort, const np::Array<uint8_t>& y, const np::Array<float64_t>& weights) noexcept {
float64_t total_pos = 0.0, total_neg = 0.0;
for(size_t i = 0; i < y.shape[0]; ++i)
(y[i] == static_cast<uint8_t>(1) ? total_pos : total_neg) += weights[i];
@ -81,7 +96,69 @@ np::Array<float64_t> train_weak_clf_cpu(const np::Array<int32_t>& X_feat, const
return classifiers;
}
np::Array<uint16_t> argsort_2d_cpu(const np::Array<int32_t>& X_feat) noexcept {
/**
* @brief Perform an indirect sort of a given array within a given bound.
*
* @tparam T Inner type of the array
* @param a Array to sort
* @param indices Array of indices to write to
* @param low lower bound to sort
* @param high higher bound to sort
*/
template<typename T>
static void argsort(const T* const a, uint16_t* const indices, size_t low, size_t high) noexcept {
const size_t total = high - low + 1;
size_t* const stack = new size_t[total]{low, high};
//size_t stack[total];
//stack[0] = l;
//stack[1] = h;
size_t top = 1;
while (top <= total) {
high = stack[top--];
low = stack[top--];
if(low >= high)
break;
const size_t p = as_partition(a, indices, low, high);
if (p - 1 > low && p - 1 < total) {
stack[++top] = low;
stack[++top] = p - 1;
}
if (p + 1 < high) {
stack[++top] = p + 1;
stack[++top] = high;
}
}
delete[] stack;
}
/**
* @brief Apply argsort to every column of a given 2D array.
*
* @tparam T Inner type of the array
* @param a 2D Array to sort
* @return 2D Array of indices that sort the array
*/
template<typename T>
static np::Array<uint16_t> argsort_bounded(const np::Array<T>& a, const size_t& low, const size_t& high) noexcept {
np::Array<uint16_t> indices = np::empty(a.shape);
map(indices, [](const size_t& i, const uint16_t&) -> uint16_t { return i; });
argsort_bounded(a, indices, low, high);
return indices;
}
/**
* @brief Perform an indirect sort on each column of a given 2D array (CPU version).
*
* @param a 2D Array to sort
* @return 2D Array of indices that sort the array
*/
np::Array<uint16_t> argsort_2d(const np::Array<int32_t>& X_feat) noexcept {
const np::Array<uint16_t> indices = np::empty<uint16_t>(X_feat.shape);
const size_t length = np::prod(X_feat.shape);
for (size_t i = 0; i < length; i += X_feat.shape[1]) {
@ -91,3 +168,4 @@ np::Array<uint16_t> argsort_2d_cpu(const np::Array<int32_t>& X_feat) noexcept {
return indices;
}
#endif // GPU_BOOSTED == false

View File

@ -1,8 +0,0 @@
#pragma once
#include "data.hpp"
np::Array<uint32_t> set_integral_image_cpu(const np::Array<uint8_t>&) noexcept;
np::Array<int32_t> apply_features_cpu(const np::Array<uint8_t>&, const np::Array<uint32_t>&) noexcept;
np::Array<float64_t> train_weak_clf_cpu(const np::Array<int32_t>&, const np::Array<uint16_t>&, const np::Array<uint8_t>&,
const np::Array<float64_t>&) noexcept;
np::Array<uint16_t> argsort_2d_cpu(const np::Array<int32_t>&) noexcept;

View File

@ -1,5 +1,14 @@
#include "data.hpp"
#include "config.hpp"
#if GPU_BOOSTED
/**
* @brief Prefix Sum (scan) of a given dataset.
*
* @param X Dataset of images to apply sum
* @return Scanned dataset of images
*/
static np::Array<uint32_t> __scanCPU_3d__(const np::Array<uint32_t>& X) noexcept {
np::Array<uint32_t> X_scan = np::empty<uint32_t>(X.shape);
const size_t total = np::prod(X_scan.shape);
@ -16,6 +25,14 @@ static np::Array<uint32_t> __scanCPU_3d__(const np::Array<uint32_t>& X) noexcept
return X_scan;
}
/**
* @brief GPU kernel used to do a parallel prefix sum (scan).
*
* @param n Number of width blocks
* @param j Temporary sum index
* @param d_inter Temporary sums on device to add
* @param d_X Dataset of images on device to apply sum
*/
static __global__ void __kernel_scan_3d__(const uint16_t n, const uint16_t j, np::Array<uint32_t> d_inter, np::Array<uint32_t> d_X) {
const size_t x_coor = blockIdx.x * blockDim.x + threadIdx.x;
const size_t y_coor = blockIdx.y * blockDim.y + threadIdx.y;
@ -60,6 +77,14 @@ static __global__ void __kernel_scan_3d__(const uint16_t n, const uint16_t j, np
d_X[blockIdx.z * d_X.shape[1] * d_X.shape[2] + y_coor * d_X.shape[2] + x_coor] = sA[threadIdx.x * NB_THREADS_2D_Y + threadIdx.y];
}
/**
* @brief GPU kernel for parallel sum.
*
* @param d_X Dataset of images on device
* @param d_s Temporary sums to add on device
* @param n Number of width blocks
* @param m Height of a block
*/
static __global__ void __add_3d__(np::Array<uint32_t> d_X, const np::Array<uint32_t> d_s, const uint16_t n, const uint16_t m) {
const size_t x_coor = blockIdx.x * blockDim.x + threadIdx.x;
const size_t y_coor = blockIdx.y * blockDim.y + threadIdx.y;
@ -67,6 +92,14 @@ static __global__ void __add_3d__(np::Array<uint32_t> d_X, const np::Array<uint3
d_X[blockIdx.z * d_X.shape[1] * d_X.shape[2] + y_coor * d_X.shape[2] + x_coor] += d_s[blockIdx.z * d_X.shape[1] * d_X.shape[2] + y_coor * d_X.shape[2] + blockIdx.x];
}
/**
* @brief Parallel Prefix Sum (scan) of a given dataset.
*
* Read more: https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
*
* @param X Dataset of images
* @return Scanned dataset of images
*/
static np::Array<uint32_t> __scanGPU_3d__(const np::Array<uint32_t>& X) noexcept {
np::Array<uint32_t> X_scan = np::empty<uint32_t>(X.shape);
@ -112,6 +145,12 @@ static np::Array<uint32_t> __scanGPU_3d__(const np::Array<uint32_t>& X) noexcept
return X_scan;
}
/**
* @brief GPU kernel of the function __transpose_3d__.
*
* @param d_X Dataset of images on device
* @param d_Xt Transposed dataset of images on device
*/
static __global__ void __transpose_kernel__(const np::Array<uint32_t> d_X, np::Array<uint32_t> d_Xt) {
__shared__ uint32_t temp[NB_THREADS_2D_X * NB_THREADS_2D_Y];
@ -128,6 +167,12 @@ static __global__ void __transpose_kernel__(const np::Array<uint32_t> d_X, np::A
d_Xt[blockIdx.z * d_Xt.shape[1] * d_Xt.shape[2] + x * d_X.shape[2] + y] = temp[threadIdx.x * NB_THREADS_2D_Y + threadIdx.y];
}
/**
* @brief Transpose every images in the given dataset.
*
* @param X Dataset of images
* @return Transposed dataset of images
*/
static np::Array<uint32_t> __transpose_3d__(const np::Array<uint32_t>& X) noexcept {
np::Array<uint32_t> Xt = np::empty<uint32_t>({ X.shape[0], X.shape[2], X.shape[1] });
@ -147,7 +192,13 @@ static np::Array<uint32_t> __transpose_3d__(const np::Array<uint32_t>& X) noexce
return Xt;
}
np::Array<uint32_t> set_integral_image_gpu(const np::Array<uint8_t>& X) noexcept {
/**
* @brief Transform the input images in integrated images (GPU version).
*
* @param X Dataset of images
* @return Dataset of integrated images
*/
np::Array<uint32_t> set_integral_image(const np::Array<uint8_t>& X) noexcept {
np::Array<uint32_t> X_ii = np::astype<uint32_t>(X);
X_ii = __scanCPU_3d__(X_ii);
X_ii = __transpose_3d__(X_ii);
@ -155,53 +206,17 @@ np::Array<uint32_t> set_integral_image_gpu(const np::Array<uint8_t>& X) noexcept
return __transpose_3d__(X_ii);
}
static inline __device__ int16_t __compute_feature__(const np::Array<uint32_t>& d_X_ii, const size_t& j, const int16_t& x, const int16_t& y, const int16_t& w, const int16_t& h) noexcept {
const size_t _y = y * d_X_ii.shape[1] + x;
const size_t _yh = _y + h * d_X_ii.shape[1];
return d_X_ii[j + _yh + w] + d_X_ii[j + _y] - d_X_ii[j + _yh] - d_X_ii[j + _y + w];
}
static __global__ void __apply_feature_kernel__(int32_t* d_X_feat, const np::Array<uint8_t> d_feats, const np::Array<uint32_t> d_X_ii) {
size_t i = blockIdx.x * blockDim.x + threadIdx.x;
size_t j = blockIdx.y * blockDim.y + threadIdx.y;
if (i >= d_feats.shape[0] || j >= d_X_ii.shape[0])
return;
const size_t k = i * d_X_ii.shape[0] + j;
i *= np::prod(d_feats.shape, 1);
j *= np::prod(d_X_ii.shape, 1);
const int16_t p1 = __compute_feature__(d_X_ii, j, d_feats[i + 0], d_feats[i + 1], d_feats[i + 2], d_feats[i + 3]);
const int16_t p2 = __compute_feature__(d_X_ii, j, d_feats[i + 4], d_feats[i + 5], d_feats[i + 6], d_feats[i + 7]);
const int16_t n1 = __compute_feature__(d_X_ii, j, d_feats[i + 8], d_feats[i + 9], d_feats[i + 10], d_feats[i + 11]);
const int16_t n2 = __compute_feature__(d_X_ii, j, d_feats[i + 12], d_feats[i + 13], d_feats[i + 14], d_feats[i + 15]);
d_X_feat[k] = static_cast<int32_t>(p1 + p2) - static_cast<int32_t>(n1 + n2);
}
np::Array<int32_t> apply_features_gpu(const np::Array<uint8_t>& feats, const np::Array<uint32_t>& X_ii) noexcept {
const np::Array<int32_t> X_feat = np::empty<int32_t>({ feats.shape[0], X_ii.shape[0] });
int32_t* d_X_feat;
_print_cuda_error_("malloc d_X_feat", cudaMalloc(&d_X_feat, np::prod(X_feat.shape) * sizeof(int32_t)));
np::Array<uint32_t> d_X_ii = copyToDevice<uint32_t>("X_ii", X_ii);
np::Array<uint8_t> d_feats = copyToDevice<uint8_t>("feats", feats);
const size_t dimX = static_cast<size_t>(std::ceil(static_cast<float64_t>(feats.shape[0]) / static_cast<float64_t>(NB_THREADS_2D_X)));
const size_t dimY = static_cast<size_t>(std::ceil(static_cast<float64_t>(X_ii.shape[0]) / static_cast<float64_t>(NB_THREADS_2D_Y)));
const dim3 dimGrid(dimX, dimY);
constexpr const dim3 dimBlock(NB_THREADS_2D_X, NB_THREADS_2D_Y);
__apply_feature_kernel__<<<dimGrid, dimBlock>>>(d_X_feat, d_feats, d_X_ii);
_print_cuda_error_("synchronize", cudaDeviceSynchronize());
_print_cuda_error_("memcpy X_feat", cudaMemcpy(X_feat.data, d_X_feat, np::prod(X_feat.shape) * sizeof(int32_t), cudaMemcpyDeviceToHost));
_print_cuda_error_("free d_X_feat", cudaFree(d_X_feat));
cudaFree("free d_feats", d_feats);
cudaFree("free d_X_11", d_X_ii);
return X_feat;
}
/**
* @brief GPU kernel of the function train_weak_clf.
*
* @param d_classifiers Weak classifiers on device to train
* @param d_y Labels of the features on device
* @param d_X_feat Feature images dataset on device
* @param d_X_feat_argsort Sorted indexes of the integrated features on device
* @param d_weights Weights of the features on device
* @param total_pos Total of positive labels in the dataset
* @param total_neg Total of negative labels in the dataset
*/
static __global__ void __train_weak_clf_kernel__(np::Array<float64_t> d_classifiers, const np::Array<uint8_t> d_y,
const np::Array<int32_t> d_X_feat, const np::Array<uint16_t> d_X_feat_argsort,
const np::Array<float64_t> d_weights, const float64_t total_pos, const float64_t total_neg) {
@ -210,7 +225,7 @@ static __global__ void __train_weak_clf_kernel__(np::Array<float64_t> d_classifi
i += threadIdx.x * blockDim.y * blockDim.z;
i += threadIdx.y * blockDim.z;
i += threadIdx.z;
// const size_t i = blockIdx.x * blockDim.x + threadIdx.x;
if(i >= d_classifiers.shape[0])
return;
@ -235,7 +250,16 @@ static __global__ void __train_weak_clf_kernel__(np::Array<float64_t> d_classifi
d_classifiers[i * 2] = best_threshold; d_classifiers[i * 2 + 1] = best_polarity;
}
np::Array<float64_t> train_weak_clf_gpu(const np::Array<int32_t>& X_feat, const np::Array<uint16_t>& X_feat_argsort, const np::Array<uint8_t>& y,
/**
* @brief Train the weak classifiers on a given dataset (GPU version).
*
* @param X_feat Feature images dataset
* @param X_feat_argsort Sorted indexes of the integrated features
* @param y Labels of the features
* @param weights Weights of the features
* @return Trained weak classifiers
*/
np::Array<float64_t> train_weak_clf(const np::Array<int32_t>& X_feat, const np::Array<uint16_t>& X_feat_argsort, const np::Array<uint8_t>& y,
const np::Array<float64_t>& weights) noexcept {
float64_t total_pos = 0.0, total_neg = 0.0;
for(size_t i = 0; i < y.shape[0]; ++i)
@ -251,8 +275,6 @@ np::Array<float64_t> train_weak_clf_gpu(const np::Array<int32_t>& X_feat, const
const size_t n_blocks = static_cast<size_t>(std::ceil(static_cast<float64_t>(X_feat.shape[0]) / static_cast<float64_t>(NB_THREADS_3D_X * NB_THREADS_3D_Y * NB_THREADS_3D_Z)));
constexpr const dim3 dimBlock(NB_THREADS_3D_X, NB_THREADS_3D_Y, NB_THREADS_3D_Z);
// const size_t n_blocks = static_cast<size_t>(std::ceil(static_cast<float64_t>(X_feat.shape[0]) / static_cast<float64_t>(NB_THREADS)));
// constexpr const dim3 dimBlock(NB_THREADS);
__train_weak_clf_kernel__<<<n_blocks, dimBlock>>>(d_classifiers, d_y, d_X_feat, d_X_feat_argsort, d_weights, total_pos, total_neg);
_print_cuda_error_("synchronize", cudaDeviceSynchronize());
@ -267,28 +289,118 @@ np::Array<float64_t> train_weak_clf_gpu(const np::Array<int32_t>& X_feat, const
return classifiers;
}
/**
* @brief Compute a feature on a integrated image at a specific coordinate (GPU version).
*
* @param d_X_ii Dataset of integrated images on device
* @param j Image index in the dataset
* @param x X coordinate
* @param y Y coordinate
* @param w width of the feature
* @param h height of the feature
*/
static inline __device__ int16_t __compute_feature__(const np::Array<uint32_t>& d_X_ii, const size_t& j, const int16_t& x, const int16_t& y, const int16_t& w, const int16_t& h) noexcept {
const size_t _y = y * d_X_ii.shape[1] + x;
const size_t _yh = _y + h * d_X_ii.shape[1];
return d_X_ii[j + _yh + w] + d_X_ii[j + _y] - d_X_ii[j + _yh] - d_X_ii[j + _y + w];
}
/**
* @brief GPU kernel of the function apply_features.
*
* @param d_X_feat Dataset of image features on device
* @param d_feats Features on device to apply
* @param d_X_ii Integrated image dataset on device
*/
static __global__ void __apply_feature_kernel__(int32_t* d_X_feat, const np::Array<uint8_t> d_feats, const np::Array<uint32_t> d_X_ii) {
size_t i = blockIdx.x * blockDim.x + threadIdx.x;
size_t j = blockIdx.y * blockDim.y + threadIdx.y;
if (i >= d_feats.shape[0] || j >= d_X_ii.shape[0])
return;
const size_t k = i * d_X_ii.shape[0] + j;
i *= np::prod(d_feats.shape, 1);
j *= np::prod(d_X_ii.shape, 1);
const int16_t p1 = __compute_feature__(d_X_ii, j, d_feats[i + 0], d_feats[i + 1], d_feats[i + 2], d_feats[i + 3]);
const int16_t p2 = __compute_feature__(d_X_ii, j, d_feats[i + 4], d_feats[i + 5], d_feats[i + 6], d_feats[i + 7]);
const int16_t n1 = __compute_feature__(d_X_ii, j, d_feats[i + 8], d_feats[i + 9], d_feats[i + 10], d_feats[i + 11]);
const int16_t n2 = __compute_feature__(d_X_ii, j, d_feats[i + 12], d_feats[i + 13], d_feats[i + 14], d_feats[i + 15]);
d_X_feat[k] = static_cast<int32_t>(p1 + p2) - static_cast<int32_t>(n1 + n2);
}
/**
* @brief Apply the features on a integrated image dataset (GPU version).
*
* @param feats Features to apply
* @param X_ii Integrated image dataset
* @return Applied features
*/
np::Array<int32_t> apply_features(const np::Array<uint8_t>& feats, const np::Array<uint32_t>& X_ii) noexcept {
const np::Array<int32_t> X_feat = np::empty<int32_t>({ feats.shape[0], X_ii.shape[0] });
int32_t* d_X_feat = nullptr;
_print_cuda_error_("malloc d_X_feat", cudaMalloc(&d_X_feat, np::prod(X_feat.shape) * sizeof(int32_t)));
np::Array<uint32_t> d_X_ii = copyToDevice<uint32_t>("X_ii", X_ii);
np::Array<uint8_t> d_feats = copyToDevice<uint8_t>("feats", feats);
const size_t dimX = static_cast<size_t>(std::ceil(static_cast<float64_t>(feats.shape[0]) / static_cast<float64_t>(NB_THREADS_2D_X)));
const size_t dimY = static_cast<size_t>(std::ceil(static_cast<float64_t>(X_ii.shape[0]) / static_cast<float64_t>(NB_THREADS_2D_Y)));
const dim3 dimGrid(dimX, dimY);
constexpr const dim3 dimBlock(NB_THREADS_2D_X, NB_THREADS_2D_Y);
__apply_feature_kernel__<<<dimGrid, dimBlock>>>(d_X_feat, d_feats, d_X_ii);
_print_cuda_error_("synchronize", cudaDeviceSynchronize());
_print_cuda_error_("memcpy X_feat", cudaMemcpy(X_feat.data, d_X_feat, np::prod(X_feat.shape) * sizeof(int32_t), cudaMemcpyDeviceToHost));
_print_cuda_error_("free d_X_feat", cudaFree(d_X_feat));
cudaFree("free d_feats", d_feats);
cudaFree("free d_X_11", d_X_ii);
return X_feat;
}
/**
* @brief Partition of the argsort algorithm.
*
* @tparam T Inner type of the array
* @param d_a Array on device to sort
* @param d_indices Array of indices on device to write to
* @param low lower bound to sort
* @param high higher bound to sort
* @return Last index sorted
*/
template<typename T>
__device__ inline static int32_t as_partition_gpu(const T* a, uint16_t* indices, const size_t l, const size_t h) noexcept {
int32_t i = l - 1;
for (int32_t j = l; j <= h; ++j)
if (a[indices[j]] < a[indices[h]])
swap(&indices[++i], &indices[j]);
swap(&indices[++i], &indices[h]);
__device__ inline static int32_t _as_partition_(const T* d_a, uint16_t* const d_indices, const size_t low, const size_t high) noexcept {
int32_t i = low - 1;
for (int32_t j = low; j <= high; ++j)
if (d_a[d_indices[j]] < d_a[d_indices[high]])
swap(&d_indices[++i], &d_indices[j]);
swap(&d_indices[++i], &d_indices[high]);
return i;
}
/**
* @brief Cuda kernel to perform an indirect sort of a given array within a given bound.
*
* @tparam T Inner type of the array
* @param d_a Array on device to sort
* @param d_indices Array of indices on device to write to
* @param low lower bound to sort
* @param high higher bound to sort
*/
template<typename T>
__device__ void argsort_gpu(const T* a, uint16_t* indices, const size_t l, const size_t h) noexcept {
const size_t total = h - l + 1;
__device__ void argsort_kernel(const T* d_a, uint16_t* const d_indices, size_t low, size_t high) noexcept {
const size_t total = high - low + 1;
//int32_t* stack = new int32_t[total]{l, h};
//int32_t* stack = new int32_t[total]{low, high};
//int32_t stack[total];
int32_t stack[6977];
//int32_t stack[1<<16];
stack[0] = l;
stack[1] = h;
stack[0] = low;
stack[1] = high;
size_t top = 1, low = l, high = h;
size_t top = 1;
while (top <= total) {
high = stack[top--];
@ -296,7 +408,7 @@ __device__ void argsort_gpu(const T* a, uint16_t* indices, const size_t l, const
if(low >= high)
break;
const int32_t p = as_partition_gpu(a, indices, low, high);
const int32_t p = _as_partition_(d_a, d_indices, low, high);
if (p - 1 > low && p - 1 < total) {
stack[++top] = low;
@ -311,42 +423,49 @@ __device__ void argsort_gpu(const T* a, uint16_t* indices, const size_t l, const
//delete[] stack;
}
/**
* @brief Cuda kernel where argsort is applied to every column of a given 2D array.
*
* @tparam T Inner type of the array
* @param d_a 2D Array on device to sort
* @param d_indices 2D Array of indices on device to write to
*/
template<typename T>
__global__ void argsort_bounded_gpu(const np::Array<T> a, uint16_t* indices){
__global__ void argsort_bounded(const np::Array<T> d_a, uint16_t* const d_indices){
const size_t idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx >= a.shape[0])
if (idx >= d_a.shape[0])
return;
for(size_t y = 0; y < a.shape[1]; ++y) indices[idx * a.shape[1] + y] = y;
argsort_gpu(&a[idx * a.shape[1]], &indices[idx * a.shape[1]], 0, a.shape[1] - 1);
for(size_t y = 0; y < d_a.shape[1]; ++y) d_indices[idx * d_a.shape[1] + y] = y;
argsort_kernel(&d_a[idx * d_a.shape[1]], &d_indices[idx * d_a.shape[1]], 0, d_a.shape[1] - 1);
}
np::Array<uint16_t> argsort_2d_gpu(const np::Array<int32_t>& X_feat) noexcept {
const np::Array<uint16_t> indices = np::empty<uint16_t>(X_feat.shape);
/**
* @brief Perform an indirect sort on each column of a given 2D array (GPU version).
*
* @param a 2D Array to sort
* @return 2D Array of indices that sort the array
*/
np::Array<uint16_t> argsort_2d(const np::Array<int32_t>& a) noexcept {
const np::Array<uint16_t> indices = np::empty<uint16_t>(a.shape);
uint16_t* d_indices;
uint16_t* d_indices = nullptr;
const size_t indices_size = np::prod(indices.shape) * sizeof(uint16_t);
np::Array<int32_t> d_X_feat = copyToDevice<int32_t>("X_feat", X_feat);
np::Array<int32_t> d_a = copyToDevice<int32_t>("X_feat", a);
_print_cuda_error_("malloc d_indices", cudaMalloc(&d_indices, indices_size));
const size_t dimGrid = static_cast<size_t>(std::ceil(static_cast<float64_t>(X_feat.shape[0]) / static_cast<float64_t>(NB_THREADS)));
const size_t dimGrid = static_cast<size_t>(std::ceil(static_cast<float64_t>(a.shape[0]) / static_cast<float64_t>(NB_THREADS)));
const dim3 dimBlock(NB_THREADS);
argsort_bounded_gpu<<<dimGrid, dimBlock>>>(d_X_feat, d_indices);
argsort_bounded<<<dimGrid, dimBlock>>>(d_a, d_indices);
_print_cuda_error_("synchronize", cudaDeviceSynchronize());
_print_cuda_error_("memcpy d_indices", cudaMemcpy(indices.data, d_indices, indices_size, cudaMemcpyDeviceToHost));
cudaFree("free d_X_feat", d_X_feat);
cudaFree("free d_a", d_a);
_print_cuda_error_("free d_indices", cudaFree(d_indices));
return indices;
}
__host__ __device__
size_t np::prod(const np::Shape& shape, const size_t& offset) noexcept {
size_t result = shape[offset];
for(size_t i = 1 + offset; i < shape.length; ++i)
result *= shape[i];
return result;
}
#endif // GPU_BOOSTED

View File

@ -1,8 +0,0 @@
#pragma once
#include "data.hpp"
np::Array<uint32_t> set_integral_image_gpu(const np::Array<uint8_t>&) noexcept;
np::Array<int32_t> apply_features_gpu(const np::Array<uint8_t>&, const np::Array<uint32_t>&) noexcept;
np::Array<float64_t> train_weak_clf_gpu(const np::Array<int32_t>& X_feat, const np::Array<uint16_t>& X_feat_argsort, const np::Array<uint8_t>& y,
const np::Array<float64_t>& weights) noexcept;
np::Array<uint16_t> argsort_2d_gpu(const np::Array<int32_t>& X_feat) noexcept;

39
cpp/ViolaJones_device.hpp Normal file
View File

@ -0,0 +1,39 @@
#pragma once
#include "data.hpp"
/**
* @brief Transform the input images in integrated images.
*
* @param X Dataset of images
* @return Dataset of integrated images
*/
np::Array<uint32_t> set_integral_image(const np::Array<uint8_t>&) noexcept;
/**
* @brief Apply the features on a integrated image dataset.
*
* @param feats Features to apply
* @param X_ii Integrated image dataset
* @return Applied features
*/
np::Array<int32_t> apply_features(const np::Array<uint8_t>&, const np::Array<uint32_t>&) noexcept;
/**
* @brief Train the weak classifiers on a given dataset.
*
* @param X_feat Feature images dataset
* @param X_feat_argsort Sorted indexes of the integrated features
* @param y Labels of the features
* @param weights Weights of the features
* @return Trained weak classifiers
*/
np::Array<float64_t> train_weak_clf(const np::Array<int32_t>&, const np::Array<uint16_t>&, const np::Array<uint8_t>&,
const np::Array<float64_t>&) noexcept;
/**
* @brief Perform an indirect sort on each column of a given 2D array
*
* @param a 2D Array to sort
* @return 2D Array of indices that sort the array
*/
np::Array<uint16_t> argsort_2d(const np::Array<int32_t>&) noexcept;

View File

@ -1,9 +1,7 @@
#include "data.hpp"
//#include "toolbox.hpp"
//#include <cstring>
int print(const np::Shape& shape) noexcept {
int num_written = 0;
int32_t print(const np::Shape& shape) noexcept {
int32_t num_written = 0;
num_written += printf("(");
if (shape.length > 1) {
const size_t length = shape.length - 1;
@ -17,20 +15,12 @@ int print(const np::Shape& shape) noexcept {
}
template<typename T>
int print(const np::Array<T>& array, const char* format) noexcept {
//printf("[");
//const size_t length = np::prod(array.shape);
//for(size_t i = 0; i < length - 1; ++i)
// //std::cout << array[i] << " ";
// printf("%f ", array[i]);
////std::cout << array[array.shape[0] - 1] << "]\n";
//printf("%f]\n", array[length - 1]);
int32_t print(const np::Array<T>& array, const char* const format) noexcept {
char format_space[BUFFER_SIZE] = { 0 };
sprintf(format_space, "%s ", format);
snprintf(format_space, BUFFER_SIZE,"%s ", format);
char format_close[BUFFER_SIZE] = { 0 };
sprintf(format_close, "%s]\n", format);
int num_written = 0;
snprintf(format_close, BUFFER_SIZE,"%s]\n", format);
int32_t num_written = 0;
if (array.shape.length == 1) {
const size_t max = array.shape[0] - 1;
@ -53,16 +43,16 @@ int print(const np::Array<T>& array, const char* format) noexcept {
return num_written;
}
int print(const np::Array<uint8_t>& array) noexcept {
int32_t print(const np::Array<uint8_t>& array) noexcept {
return print(array, "%hu");
}
int print(const np::Array<float64_t>& array) noexcept {
int32_t print(const np::Array<float64_t>& array) noexcept {
return print(array, "%f");
}
int print_feat(const np::Array<uint8_t>& array, const np::Slice& slice) noexcept {
int num_written = 0;
int32_t print_feat(const np::Array<uint8_t>& array, const np::Slice& slice) noexcept {
int32_t num_written = 0;
num_written += printf("[");
const size_t feat_size = np::prod(array.shape, 1);
const size_t offset = slice.x * feat_size;
@ -74,10 +64,10 @@ int print_feat(const np::Array<uint8_t>& array, const np::Slice& slice) noexcept
return num_written;
}
int print(const np::Array<uint8_t>& array, const np::Slice& slice) noexcept {
int num_written = 0;
int32_t print(const np::Array<uint8_t>& array, const np::Slice& slice) noexcept {
int32_t num_written = 0;
if (array.shape.length == 1) {
const size_t max = slice.y - 1; //std::min(slice.y, array.shape[0] - 1);
const size_t max = slice.y - 1;
num_written += printf("[");
for (size_t i = slice.x; i < max; ++i)
num_written += printf("%hu ", array[i]);
@ -97,10 +87,10 @@ int print(const np::Array<uint8_t>& array, const np::Slice& slice) noexcept {
return num_written;
}
int print(const np::Array<uint32_t>& array, const np::Slice& slice) noexcept {
int num_written = 0;
int32_t print(const np::Array<uint32_t>& array, const np::Slice& slice) noexcept {
int32_t num_written = 0;
if (array.shape.length == 1) {
const size_t max = slice.y - 1; //std::min(slice.y, array.shape[0] - 1);
const size_t max = slice.y - 1;
num_written += printf("[");
for (size_t i = slice.x; i < max; ++i)
num_written += printf("%iu ", array[i]);
@ -115,37 +105,35 @@ int print(const np::Array<uint32_t>& array, const np::Slice& slice) noexcept {
num_written += printf("%5i ", array[k + i * array.shape[1] + j]);
num_written += printf("]\n");
}
num_written += print("]");
num_written += printf("]");
}
return num_written;
}
int print(const np::Array<int32_t>& array, const np::Slice& slice) noexcept {
int num_written = 0;
int32_t print(const np::Array<int32_t>& array, const np::Slice& slice) noexcept {
int32_t num_written = 0;
num_written += printf("[");
//size_t k = slice.x * array.shape[1] * array.shape[2] + slice.y * array.shape[2] + slice.z;
size_t k = slice.x * array.shape[1];
for (size_t i = k; i < k + (slice.y - slice.x); ++i) {
num_written += printf("%5i ", array[i]);
}
num_written += print("]");
num_written += printf("]");
return num_written;
}
int print(const np::Array<uint16_t>& array, const np::Slice& slice) noexcept {
int num_written = 0;
int32_t print(const np::Array<uint16_t>& array, const np::Slice& slice) noexcept {
int32_t num_written = 0;
num_written += printf("[");
//size_t k = slice.x * array.shape[1] * array.shape[2] + slice.y * array.shape[2] + slice.z;
size_t k = slice.x * array.shape[1];
for (size_t i = k; i < k + (slice.y - slice.x); ++i) {
num_written += printf("%5hu ", array[i]);
}
num_written += print("]");
num_written += printf("]");
return num_written;
}
static inline np::Array<uint8_t> load_set(const char* set_name) {
FILE* file = fopen(set_name, "rb");
static inline np::Array<uint8_t> load_set(const char* const set_name) {
FILE* const file = fopen(set_name, "rb");
if (file == NULL) {
print_error_file(set_name);
throw;
@ -156,7 +144,7 @@ static inline np::Array<uint8_t> load_set(const char* set_name) {
fclose(file);
throw;
}
size_t* dims = new size_t[3]();
size_t* const dims = new size_t[3]();
if (!sscanf(meta, "%lu %lu %lu", &dims[0], &dims[1], &dims[2])) {
print_error_file(set_name);
fclose(file);
@ -167,13 +155,12 @@ static inline np::Array<uint8_t> load_set(const char* set_name) {
const size_t size = np::prod(a.shape);
size_t i = 0, j = 0;
int c;
int32_t c;
char buff[STRING_INT_SIZE] = { 0 };
while ((c = fgetc(file)) != EOF && i < size) {
if (c == ' ' || c == '\n') {
buff[j] = '\0';
a[i++] = static_cast<uint8_t>(atoi(buff));
//memset(buff, 0, STRING_INT_SIZE);
j = 0;
}
else
@ -191,22 +178,20 @@ static inline np::Array<uint8_t> load_set(const char* set_name) {
return a;
}
std::array<np::Array<uint8_t>, 4> load_datasets() {
/**
* @brief Load the datasets.
*
* @return Array containing X_train, y_trait, X_test, y_test
*/
std::array<np::Array<uint8_t>, 4> load_datasets(void) {
return {
load_set(DATA_DIR "/X_train.bin"), load_set(DATA_DIR "/y_train.bin"),
load_set(DATA_DIR "/X_test.bin"), load_set(DATA_DIR "/y_test.bin")
};
}
void print_error_file(const char* file_dir) noexcept {
const char* buff = strerror(errno);
void print_error_file(const char* const file_dir) noexcept {
const char* const buff = strerror(errno);
fprintf(stderr, "Can't open %s, error code = %d : %s\n", file_dir, errno, buff);
// delete buff;
}
//size_t np::prod(const np::Shape& shape, const size_t& offset) noexcept {
// size_t result = shape[offset];
// for(size_t i = 1 + offset; i < shape.length; ++i)
// result *= shape[i];
// return result;
//}

View File

@ -4,7 +4,7 @@
#include <cmath>
#include <cassert>
#include <functional>
#include <memory>
#include <stdint.h>
#include "config.hpp"
#define BUFFER_SIZE 256
@ -19,15 +19,6 @@ typedef float float32_t;
typedef double float64_t;
typedef long double float128_t;
__host__ __device__
constexpr inline int print(const char* str) noexcept {
return printf("%s\n", str);
}
inline int print(const std::string& s) noexcept {
return printf("%s\n", s.c_str());
}
namespace np {
constexpr const float64_t inf = std::numeric_limits<float64_t>::infinity();
@ -44,16 +35,16 @@ namespace np {
#endif
__host__ __device__
Shape() noexcept {
// #if __DEBUG
// print("Shape created (default)");
// #endif
Shape(void) noexcept {
#if __DEBUG
printf("Shape created (default)\n");
#endif
}
__host__ __device__
Shape(const size_t& length, size_t* data) noexcept : length(length), data(data), refcount(new size_t(1)) {
Shape(const size_t& length, size_t* const data) noexcept : length(length), data(data), refcount(new size_t(1)) {
#if __DEBUG
//print("Shape created (raw)");
printf("Shape created (raw)\n");
for(size_t i = 0; i < length; ++i)
total *= data[i];
#endif
@ -61,10 +52,10 @@ namespace np {
__host__ __device__
Shape(const std::initializer_list<size_t>& dims) noexcept : length(dims.size()), data(new size_t[dims.size()]), refcount(new size_t(1)) {
// #if __DEBUG
// print("Shape created (initializer)");
// #endif
const size_t* begin = dims.begin();
#if __DEBUG
printf("Shape created (initializer)\n");
#endif
const size_t* const begin = dims.begin();
for(size_t i = 0; i < length; ++i){
data[i] = begin[i];
#if __DEBUG
@ -76,52 +67,49 @@ namespace np {
__host__ __device__
Shape(const Shape& shape) noexcept {
#if __DEBUG
print("Shape created (copy)");
printf("Shape created (copy)\n");
#endif
if (data != nullptr && data != shape.data){
#if __DEBUG
print("Former shape deleted (copy)");
printf("Former shape deleted (copy)\n");
#endif
delete[] data;
}
if (refcount != nullptr && refcount != shape.refcount){
#if __DEBUG
print("Former shape refcount freed (copy)");
printf("Former shape refcount freed (copy)\n");
#endif
delete refcount;
}
length = shape.length;
//data = new size_t[length];
//memcpy(data, shape.data, length * sizeof(size_t));
//refcount = new size_t;
//memcpy(refcount, shape.refcount, sizeof(size_t));
data = shape.data;
refcount = shape.refcount;
if (refcount != nullptr)
(*refcount)++;
#if __DEBUG
else
print("Moved shape has null refcount");
printf("Moved shape has null refcount\n");
#endif
#if __DEBUG
total = shape.total;
#endif
}
__host__ __device__
Shape(Shape&& shape) noexcept {
// #if __DEBUG
// print("Shape created (move));
// #endif
#if __DEBUG
printf("Shape created (move)\n");
#endif
if (data != nullptr && data != shape.data){
#if __DEBUG
print("Former shape deleted (move)");
printf("Former shape deleted (move)\n");
#endif
delete[] data;
}
if (refcount != nullptr && refcount != shape.refcount){
#if __DEBUG
print("Former shape refcount freed (move)");
printf("Former shape refcount freed (move)\n");
#endif
delete refcount;
}
@ -139,29 +127,29 @@ namespace np {
}
__host__ __device__
~Shape() noexcept {
~Shape(void) noexcept {
if(refcount == nullptr){
// #if __DEBUG
// print("Shape refcount freed more than once");
// #endif
#if __DEBUG
printf("Shape refcount freed more than once\n");
#endif
return;
}
--(*refcount);
// #if __DEBUG
// printf("Shape destructed : %lu\n", *refcount);
// #endif
#if __DEBUG
printf("Shape destructed : %lu\n", *refcount);
#endif
if(*refcount == 0){
if (data != nullptr){
delete[] data;
data = nullptr;
// #if __DEBUG
// print("Shape freeing ...");
// #endif
#if __DEBUG
printf("Shape freeing ...\n");
#endif
}
//#if __DEBUG
#if __DEBUG
else
printf("Shape freed more than once : %lu\n", *refcount);
//#endif
#endif
delete refcount;
refcount = nullptr;
#if __DEBUG
@ -173,34 +161,29 @@ namespace np {
__host__ __device__
Shape& operator=(const Shape& shape) noexcept {
#if __DEBUG
print("Shape created (assign copy)");
printf("Shape created (assign copy)\n");
#endif
if (data != nullptr && data != shape.data){
#if __DEBUG
print("Former shape deleted (assign copy)");
printf("Former shape deleted (assign copy)\n");
#endif
delete[] data;
}
if (refcount != nullptr && refcount != shape.refcount){
#if __DEBUG
print("Former shape refcount freed (assign copy)");
printf("Former shape refcount freed (assign copy)\n");
#endif
delete refcount;
}
length = shape.length;
// data = new size_t[length];
// memcpy(data, shape.data, length * sizeof(size_t));
// refcount = new size_t;
// memcpy(refcount, shape.refcount, sizeof(size_t));
data = shape.data;
refcount = shape.refcount;
if (refcount != nullptr)
(*refcount)++;
#if __DEBUG
else
printf("Assigned copy shape has null refcount");
printf("Assigned copy shape has null refcount\n");
total = shape.total;
#endif
return *this;
@ -208,18 +191,18 @@ namespace np {
__host__ __device__
Shape& operator=(Shape&& shape) noexcept {
// #if __DEBUG
// print("Shape created (assign move)");
// #endif
#if __DEBUG
printf("Shape created (assign move)\n");
#endif
if (data != nullptr && data != shape.data){
#if __DEBUG
print("Former shape deleted (assign move)");
printf("Former shape deleted (assign move)\n");
#endif
delete[] data;
}
if (refcount != nullptr && refcount != shape.refcount){
#if __DEBUG
print("Former shape refcount freed (assign move)");
printf("Former shape refcount freed (assign move)\n");
#endif
delete refcount;
}
@ -227,9 +210,9 @@ namespace np {
data = shape.data;
refcount = shape.refcount;
#if __DEBUG
total = shape.total;
if (refcount == nullptr)
print("Assigned copy shape has null refcount");
printf("Assigned copy shape has null refcount\n");
total = shape.total;
shape.total = 1;
#endif
shape.length = 0;
@ -280,62 +263,57 @@ namespace np {
size_t* refcount = nullptr;
__host__ __device__
Array() noexcept {
// #if __DEBUG
// print("Array created (default)");
// #endif
Array(void) noexcept {
#if __DEBUG
printf("Array created (default)\n");
#endif
}
__host__ __device__
Array(const Shape& shape, T* data) noexcept : shape(shape), data(data), refcount(new size_t(1)) {
// #if __DEBUG
// print("Array created (raw, copy shape)");
// #endif
Array(const Shape& shape, T* const data) noexcept : shape(shape), data(data), refcount(new size_t(1)) {
#if __DEBUG
printf("Array created (raw, copy shape)\n");
#endif
}
__host__ __device__
Array(const Shape& shape) noexcept : shape(shape), data(new T[np::prod(shape)]), refcount(new size_t(1)) {
// #if __DEBUG
// print("Array created (raw empty, copy shape)");
// #endif
#if __DEBUG
printf("Array created (raw empty, copy shape)\n");
#endif
}
__host__ __device__
Array(Shape&& shape, T* data) noexcept : shape(std::move(shape)), data(data), refcount(new size_t(1)) {
// #if __DEBUG
// print("Array created (raw, move shape)");
// #endif
Array(Shape&& shape, T* const data) noexcept : shape(shape), data(data), refcount(new size_t(1)) {
#if __DEBUG
printf("Array created (raw, move shape)\n");
#endif
}
__host__ __device__
Array(Shape&& shape) noexcept : shape(std::move(shape)), data(new T[np::prod(shape)]), refcount(new size_t(1)) {
// #if __DEBUG
// print("Array created (raw empty, move shape)");
// #endif
Array(Shape&& shape) noexcept : shape(shape), data(new T[np::prod(shape)]), refcount(new size_t(1)) {
#if __DEBUG
printf("Array created (raw empty, move shape)\n");
#endif
}
__host__ __device__
Array(const Array& array) noexcept : shape(array.shape) {
#if __DEBUG
print("Array created (copy)");
printf("Array created (copy)\n");
#endif
if (data != nullptr && data != array.data){
#ifdef __debug
print("Former array deleted (move)");
#if __DEBUG
printf("Former array deleted (copy)\n");
#endif
delete[] data;
}
if (refcount != nullptr && refcount != array.refcount){
#if __DEBUG
print("Former array refcount freed (move)");
printf("Former array refcount freed (copy)\n");
#endif
delete refcount;
}
// const size_t size = np::prod(shape);
// data = new T[size];
// memcpy(data, array.data, size);
// refcount = new size_t;
// memcpy(refcount, array.refcount, sizeof(size_t));
data = array.data;
refcount = array.refcount;
@ -343,28 +321,27 @@ namespace np {
(*refcount)++;
#if __DEBUG
else
print("Moved array has null refcount");
printf("Moved array has null refcount\n");
#endif
}
__host__ __device__
Array(Array&& array) noexcept {
// #if __DEBUG
// print("Array created (move)");
// #endif
Array(Array&& array) noexcept : shape(std::move(array.shape)) {
#if __DEBUG
printf("Array created (move)\n");
#endif
if (data != nullptr && data != array.data){
#if __DEBUG
print("Former array deleted (move)");
printf("Former array deleted (move)\n");
#endif
delete[] data;
}
if (refcount != nullptr && refcount != array.refcount){
#if __DEBUG
print("Former array refcount freed (move)");
printf("Former array refcount freed (move)\n");
#endif
delete refcount;
}
shape = std::move(array.shape);
data = array.data;
refcount = array.refcount;
@ -373,24 +350,24 @@ namespace np {
}
__host__ __device__
~Array() noexcept {
~Array(void) noexcept {
if(refcount == nullptr){
// #if __DEBUG
// print("Array refcount freed more than once");
// #endif
#if __DEBUG
printf("Array refcount freed more than once\n");
#endif
return;
}
--(*refcount);
// #if __DEBUG
// printf("Array destructed : %lu\n", *refcount);
// #endif
#if __DEBUG
printf("Array destructed : %lu\n", *refcount);
#endif
if(*refcount == 0){
if (data != nullptr){
delete[] data;
data = nullptr;
// #if __DEBUG
// print("Array freeing ...");
// #endif
#if __DEBUG
printf("Array freeing ...\n");
#endif
}
#if __DEBUG
else
@ -404,53 +381,47 @@ namespace np {
__host__ __device__
Array& operator=(const Array& array) noexcept {
#if __DEBUG
print("Array created (assign copy)");
printf("Array created (assign copy)\n");
#endif
if (data != nullptr && data != array.data){
#if __DEBUG
print("Former array deleted (assign copy)");
printf("Former array deleted (assign copy)\n");
#endif
delete[] data;
}
if (refcount != nullptr && refcount != array.refcount){
#if __DEBUG
print("Former array refcount freed (assign copy)");
printf("Former array refcount freed (assign copy)\n");
#endif
delete refcount;
}
shape = array.shape;
// const size_t size = np::prod(shape) * sizeof(T);
// data = new T[size];
// memcpy(data, array.data, size);
// refcount = new size_t;
// memcpy(refcount, array.refcount, sizeof(size_t));
data = array.data;
refcount = array.refcount;
if (refcount != nullptr)
(*refcount)++;
#if __DEBUG
else
print("Assigned array has null refcount");
printf("Assigned array has null refcount\n");
#endif
return *this;
}
__host__ __device__
Array& operator=(Array&& array) noexcept {
// #if __DEBUG
// print("Array created (assign move)");
// #endif
#if __DEBUG
printf("Array created (assign move)\n");
#endif
if (data != nullptr && data != array.data){
#if __DEBUG
print("Former array deleted (assign move)");
printf("Former array deleted (assign move)\n");
#endif
delete[] data;
}
if (refcount != nullptr && refcount != array.refcount){
#if __DEBUG
print("Former array refcount freed (assign move)");
printf("Former array refcount freed (assign move)\n");
#endif
delete refcount;
}
@ -485,35 +456,39 @@ namespace np {
};
template<typename T>
Array<T> empty(Shape&& shape) noexcept {
return { std::move(shape), new T[np::prod(shape)] };
inline Array<T> empty(Shape&& shape) noexcept {
return Array<T>(shape);
}
template<typename T>
Array<T> empty(const Shape& shape) noexcept {
return { std::move(shape), new T[np::prod(shape)] };
inline Array<T> empty(const Shape& shape) noexcept {
return Array<T>(shape);
}
template<typename T>
Array<T> empty(const std::initializer_list<size_t>& dims) noexcept {
const Shape shape(dims);
return { std::move(shape), new T[np::prod(shape)] };
inline Array<T> empty(const std::initializer_list<size_t>& dims) noexcept {
return Array<T>(dims);
}
template<typename T>
Array<T> zeros(Shape&& shape) noexcept {
return { std::move(shape), new T[np::prod(shape)]{0} };
Array<T> res(shape);
memset(res.data, 0, sizeof(T) * np::prod(res.shape));
return res;
}
template<typename T>
Array<T> zeros(const Shape& shape) noexcept {
return { std::move(shape), new T[np::prod(shape)]{0} };
Array<T> res(shape);
memset(res.data, 0, sizeof(T) * np::prod(res.shape));
return res;
}
template<typename T>
Array<T> zeros(const std::initializer_list<size_t>& dims) noexcept {
const Shape shape(dims);
return { std::move(shape), new T[np::prod(shape)]{0} };
Array<T> res(dims);
memset(res.data, 0, sizeof(T) * np::prod(res.shape));
return res;
}
template<typename T>
@ -773,7 +748,7 @@ constexpr np::Array<T>& map(np::Array<T>& a, const std::function<T(const size_t&
template<typename T>
__host__ __device__
constexpr inline static void swap(T* a, T* b) noexcept {
constexpr inline static void swap(T* const a, T* const b) noexcept {
if (a == b) return;
const T temp = *a;
*a = *b;
@ -805,7 +780,7 @@ void quicksort(const np::Array<T>& a) noexcept {
}
template<typename T>
static size_t as_partition(const T* a, uint16_t* indices, const size_t& l, const size_t& h) noexcept {
static size_t as_partition(const T* const a, uint16_t* const indices, const size_t& l, const size_t& h) noexcept {
size_t i = l - 1;
for (size_t j = l; j <= h; ++j)
if (a[indices[j]] < a[indices[h]])
@ -814,69 +789,27 @@ static size_t as_partition(const T* a, uint16_t* indices, const size_t& l, const
return i;
}
template<typename T>
void argsort(const T* a, uint16_t* indices, const size_t& l, const size_t& h) noexcept {
const size_t total = h - l + 1;
size_t* stack = new size_t[total]{l, h};
size_t top = 1, low = l, high = h;
while (top <= total) {
high = stack[top--];
low = stack[top--];
if(low >= high)
break;
const size_t p = as_partition(a, indices, low, high);
if (p - 1 > low && p - 1 < total) {
stack[++top] = low;
stack[++top] = p - 1;
}
if (p + 1 < high) {
stack[++top] = p + 1;
stack[++top] = high;
}
}
delete[] stack;
}
template<typename T>
np::Array<uint16_t> argsort(const np::Array<T>& other, const size_t& l, const size_t& h) noexcept {
np::Array<uint16_t> indices = np::empty(other.shape);
map(indices, [](const size_t& i, const uint16_t&) -> uint16_t { return i; });
argsort(other, indices, l, h);
return indices;
}
template<typename T>
np::Array<uint16_t> argsort(const np::Array<T>* other, const size_t& length) noexcept {
return argsort(other, 0, length - 1);
}
std::array<np::Array<uint8_t>, 4> load_datasets(void);
void print_error_file(const char*) noexcept;
void print_error_file(const char* const) noexcept;
template<typename T>
void save(const np::Array<T>& d, const char* filename) {
FILE* output = fopen(filename, "wb");
void save(const np::Array<T>& d, const char* const filename) {
FILE* const output = fopen(filename, "wb");
if (output == NULL) {
print_error_file(filename);
throw;
}
assert(d.shape.refcount != 0);//, "Refcount shape is zero !!");
assert(d.shape.refcount != 0);
fwrite(&d.shape.length, sizeof(size_t), 1, output);
fwrite(d.shape.data, sizeof(size_t), d.shape.length, output);
assert(d.refcount != 0);//, "Refcount array is zero !!");
assert(d.refcount != 0);
fwrite(d.data, sizeof(T), np::prod(d.shape), output);
fclose(output);
}
template<typename T>
np::Array<T> load(const char* filename) {
FILE* input = fopen(filename, "rb");
np::Array<T> load(const char* const filename) {
FILE* const input = fopen(filename, "rb");
if (input == NULL) {
print_error_file(filename);
throw;
@ -887,7 +820,7 @@ np::Array<T> load(const char* filename) {
fclose(input);
throw;
}
size_t* data = new size_t[length];
size_t* const data = new size_t[length];
if(!fread(data, sizeof(size_t), length, input)){
print_error_file(filename);
fclose(input);
@ -905,7 +838,7 @@ np::Array<T> load(const char* filename) {
#ifdef __CUDACC__
template<typename T>
np::Array<T> copyToDevice(const char* name, const np::Array<T>& array) noexcept {
np::Array<T> copyToDevice(const char* const name, const np::Array<T>& array) noexcept {
const size_t array_size = np::prod(array.shape) * sizeof(T);
const size_t shape_size = array.shape.length * sizeof(size_t);
np::Array<T> d_array;
@ -925,7 +858,7 @@ np::Array<T> copyToDevice(const char* name, const np::Array<T>& array) noexcept
}
template<typename T>
constexpr void cudaFree(const char* name, np::Array<T>& array) noexcept {
constexpr void cudaFree(const char* const name, np::Array<T>& array) noexcept {
//_print_cuda_error_(name, cudaFree(array.refcount));
//array.refcount = nullptr;
_print_cuda_error_(name, cudaFree(array.data));
@ -936,16 +869,16 @@ constexpr void cudaFree(const char* name, np::Array<T>& array) noexcept {
array.shape.data = nullptr;
}
constexpr inline void _print_cuda_error_(const char* name, const cudaError_t& err) noexcept {
constexpr inline void _print_cuda_error_(const char* const name, const cudaError_t& err) noexcept {
if (err != cudaSuccess) fprintf(stderr, "Error: %s = %d : %s\n", name, err, cudaGetErrorString(err));
}
#endif
int print(const np::Shape&) noexcept;
int print(const np::Array<uint8_t>&) noexcept;
int print(const np::Array<float64_t>&) noexcept;
int print(const np::Array<uint8_t>&, const np::Slice&) noexcept;
int print(const np::Array<uint32_t>&, const np::Slice&) noexcept;
int print(const np::Array<int32_t>&, const np::Slice&) noexcept;
int print(const np::Array<uint16_t>&, const np::Slice&) noexcept;
int print_feat(const np::Array<uint8_t>&, const np::Slice&) noexcept;
int32_t print(const np::Shape&) noexcept;
int32_t print(const np::Array<uint8_t>&) noexcept;
int32_t print(const np::Array<float64_t>&) noexcept;
int32_t print(const np::Array<uint8_t>&, const np::Slice&) noexcept;
int32_t print(const np::Array<uint32_t>&, const np::Slice&) noexcept;
int32_t print(const np::Array<int32_t>&, const np::Slice&) noexcept;
int32_t print(const np::Array<uint16_t>&, const np::Slice&) noexcept;
int32_t print_feat(const np::Array<uint8_t>&, const np::Slice&) noexcept;

16
cpp/data_device.cu Normal file
View File

@ -0,0 +1,16 @@
#include "data.hpp"
/**
* @brief Product of every elements in a given shape after a given offset.
*
* @param shape Shape to product over
* @param offset Skip offset
* @return Scalar product
*/
__host__ __device__
size_t np::prod(const np::Shape& shape, const size_t& offset) noexcept {
size_t result = shape[offset];
for(size_t i = 1 + offset; i < shape.length; ++i)
result *= shape[i];
return result;
}

15
cpp/docker-compose.yaml Normal file
View File

@ -0,0 +1,15 @@
services:
violajones-cpp:
image: saundersp/violajones-cpp
build: .
volumes:
- ./models:/home/ViolaJones/cpp/models
- ./out:/home/ViolaJones/cpp/out
- ../data:/home/ViolaJones/data
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]

View File

@ -11,7 +11,7 @@ void test_working(const size_t& length) noexcept {
const size_t size = length * sizeof(size_t);
#if __DEBUG
print("Estimating memory footprint at : " + format_byte_size(2 * size));
printf("Estimating memory footprint at : %s\n", format_byte_size(2 * size).c_str());
#endif
np::Array<size_t> x = np::empty<size_t>({ length }), y = np::empty<size_t>({ length });
@ -53,7 +53,7 @@ void test_working_2d(const size_t& N1, const size_t& N2) noexcept {
const size_t size = length * sizeof(size_t);
#if __DEBUG
print("Estimating memory footprint at : " + format_byte_size(2 * size));
printf("Estimating memory footprint at : %s\n", format_byte_size(2 * size).c_str());
#endif
np::Array<size_t> x = np::empty<size_t>({ length }), y = np::empty<size_t>({ length });
@ -96,7 +96,7 @@ void test_working_3d(const size_t& N1, const size_t& N2, const size_t& N3) noexc
const size_t size = length * sizeof(size_t);
#if __DEBUG
print("Estimating memory footprint at : " + format_byte_size(2 * size));
printf("Estimating memory footprint at : %s\n", format_byte_size(2 * size).c_str());
#endif
np::Array<size_t> x = np::empty<size_t>({ length }), y = np::empty<size_t>({ length });

View File

@ -1,50 +1,54 @@
#include <filesystem>
namespace fs = std::filesystem;
#include "data.hpp"
#include "toolbox.hpp"
#include "config.hpp"
#include "gpu_unit_test.hpp"
#include "toolbox_unit_test.hpp"
#include "ViolaJones.hpp"
#include "ViolaJonesGPU.hpp"
#include "ViolaJonesCPU.hpp"
#include "ViolaJones_device.hpp"
#if GPU_BOOSTED
#include "gpu_unit_test.hpp"
#define LABEL "GPU"
#define apply_features apply_features_gpu
#define set_integral_image set_integral_image_gpu
#define argsort_2d argsort_2d_gpu
#else
#define LABEL "CPU"
#define apply_features apply_features_cpu
#define set_integral_image set_integral_image_cpu
#define argsort_2d argsort_2d_cpu
#endif
std::tuple<np::Array<int32_t>, np::Array<uint16_t>, np::Array<uint8_t>, np::Array<int32_t>, np::Array<uint8_t>> preprocessing() {
/**
* @brief Execute the preprocessing phase
*
* The preprocessing phase consist of the following steps :
* - Load the dataset
* - Calculate features
* - Calculate integral images
* - Apply features to images
* - Calculate argsort of the featured images
*
* @return std::tuple<np::Array<int32_t>, np::Array<uint16_t>, np::Array<uint8_t>, np::Array<int32_t>, np::Array<uint8_t>> Tuple containing in order : training features, training features sorted indexes, training labels, testing features, testing labels
*/
std::tuple<np::Array<int32_t>, np::Array<uint16_t>, np::Array<uint8_t>, np::Array<int32_t>, np::Array<uint8_t>> preprocessing(void) {
// Creating state saver folders if they don't exist already
if (SAVE_STATE)
for (const char* const folder_name : { "models", "out" })
fs::create_directory(folder_name);
std::filesystem::create_directory(folder_name);
const std::chrono::system_clock::time_point preproc_timestamp = perf_counter_ns();
const std::array<int32_t, 3> preproc_gaps = { 49, -18, 29 };
header({ "Preprocessing", "Time spent (ns)", "Formatted time spent" }, preproc_gaps);
header(preproc_gaps, { "Preprocessing", "Time spent (ns)", "Formatted time spent" });
const auto [ X_train, y_train, X_test, y_test ] = state_saver<uint8_t, 4>("Loading sets", preproc_gaps[0], {"X_train", "y_train", "X_test", "y_test"},
const auto [ X_train, y_train, X_test, y_test ] = state_saver<uint8_t, 4>("Loading sets", preproc_gaps[0], { "X_train", "y_train", "X_test", "y_test" },
FORCE_REDO, SAVE_STATE, OUT_DIR, load_datasets);
#if __DEBUG
print("X_train");
printf("X_train\n");
print(X_train.shape);
print(X_train, { IDX_INSPECT });
print("X_test");
printf("X_test\n");
print(X_test.shape);
print(X_test, { IDX_INSPECT });
print("y_train");
printf("y_train\n");
print(y_train.shape);
print(y_train, { IDX_INSPECT, IDX_INSPECT + IDX_INSPECT_OFFSET });
print("y_test");
printf("y_test\n");
print(y_test.shape);
print(y_test, { IDX_INSPECT, IDX_INSPECT + IDX_INSPECT_OFFSET });
#endif
@ -53,7 +57,7 @@ std::tuple<np::Array<int32_t>, np::Array<uint16_t>, np::Array<uint8_t>, np::Arra
FORCE_REDO, SAVE_STATE, OUT_DIR, build_features, X_train.shape[1], X_train.shape[2]);
#if __DEBUG
print("feats");
printf("feats\n");
print(feats.shape);
print_feat(feats, { IDX_INSPECT });
#endif
@ -64,10 +68,10 @@ std::tuple<np::Array<int32_t>, np::Array<uint16_t>, np::Array<uint8_t>, np::Arra
FORCE_REDO, SAVE_STATE, OUT_DIR, set_integral_image, X_test);
#if __DEBUG
print("X_train_ii");
printf("X_train_ii\n");
print(X_train_ii.shape);
print(X_train_ii, { IDX_INSPECT });
print("X_test_ii");
printf("X_test_ii\n");
print(X_test_ii.shape);
print(X_test_ii, { IDX_INSPECT });
#endif
@ -78,16 +82,15 @@ std::tuple<np::Array<int32_t>, np::Array<uint16_t>, np::Array<uint8_t>, np::Arra
FORCE_REDO, SAVE_STATE, OUT_DIR, apply_features, feats, X_test_ii);
#if __DEBUG
print("X_train_feat");
printf("X_train_feat\n");
print(X_train_feat.shape);
print(X_train_feat, { IDX_INSPECT, IDX_INSPECT + IDX_INSPECT_OFFSET });
print("X_test_feat");
printf("X_test_feat\n");
print(X_test_feat.shape);
print(X_test_feat, { IDX_INSPECT, IDX_INSPECT + IDX_INSPECT_OFFSET });
#endif
// const Array<int> indices = measure_time_save<Array<int>>("Selecting best features", "indices", select_percentile, X_train_feat, d.y_train);
// const Array<int> indices = measure_time<Array<int>>("Selecting best features", select_percentile, X_train_feat, d.y_train);
// const np::Array<int32_t> indices = state_saver<int32_t>("Selecting best features", preproc_gaps[0], "indices", select_percentile, X_train_feat, d.y_train);
#if __DEBUG
// print_feature(indices);
@ -97,18 +100,18 @@ std::tuple<np::Array<int32_t>, np::Array<uint16_t>, np::Array<uint8_t>, np::Arra
FORCE_REDO, SAVE_STATE, OUT_DIR, argsort_2d, X_train_feat);
#if __DEBUG
print("X_train_feat_argsort");
printf("X_train_feat_argsort\n");
print(X_train_feat_argsort.shape);
print(X_train_feat_argsort, { IDX_INSPECT, IDX_INSPECT + IDX_INSPECT_OFFSET });
#endif
// const np::Array<uint16_t> X_test_feat_argsort = state_saver<uint16_t>("Precalculating testing set argsort (" LABEL ")", preproc_gaps[0], "X_test_feat_argsort_" LABEL,
// FORCE_REDO, SAVE_STATE, OUT_DIR, argsort_2d, X_test_feat);
const np::Array<uint16_t> X_test_feat_argsort = state_saver<uint16_t>("Precalculating testing set argsort (" LABEL ")", preproc_gaps[0], "X_test_feat_argsort_" LABEL,
FORCE_REDO, SAVE_STATE, OUT_DIR, argsort_2d, X_test_feat);
#if __DEBUG
// printf("X_test_feat_argsort\n");
// print(X_test_feat_argsort.shape);
// print(X_test_feat_argsort, { IDX_INSPECT, IDX_INSPECT + IDX_INSPECT_OFFSET });
printf("X_test_feat_argsort\n");
print(X_test_feat_argsort.shape);
print(X_test_feat_argsort, { IDX_INSPECT, IDX_INSPECT + IDX_INSPECT_OFFSET });
#endif
const long long time_spent = duration_ns(perf_counter_ns() - preproc_timestamp);
formatted_line(preproc_gaps, "", "", "", "");
@ -117,10 +120,18 @@ std::tuple<np::Array<int32_t>, np::Array<uint16_t>, np::Array<uint8_t>, np::Arra
return { X_train_feat, X_train_feat_argsort, y_train, X_test_feat, y_test };
}
/**
* @brief Train the weak classifiers.
*
* @param X_train_feat Training images
* @param X_train_feat_argsort Sorted indexes of the training images features
* @param y_train Training labels
* @return List of trained models
*/
std::array<std::array<np::Array<float64_t>, 2>, TS.size()> train(const np::Array<int32_t>& X_train_feat, const np::Array<uint16_t>& X_train_feat_argsort, const np::Array<uint8_t>& y_train) noexcept {
const std::chrono::system_clock::time_point training_timestamp = perf_counter_ns();
const std::array<int32_t, 3> training_gaps = { 26, -18, 29 };
header({ "Training", "Time spent (ns)", "Formatted time spent" }, training_gaps);
header(training_gaps, { "Training", "Time spent (ns)", "Formatted time spent" });
std::array<std::array<np::Array<float64_t>, 2>, TS.size()> models;
@ -136,9 +147,9 @@ std::array<std::array<np::Array<float64_t>, 2>, TS.size()> train(const np::Array
const auto [ alphas, final_classifiers ] = state_saver<float64_t, 2>(title, training_gaps[0], { alphas_title, final_classifiers_title },
FORCE_REDO, SAVE_STATE, MODEL_DIR, train_viola_jones, T, X_train_feat, X_train_feat_argsort, y_train);
#if __DEBUG
print("alphas");
printf("alphas\n");
print(alphas);
print("final_classifiers");
printf("final_classifiers\n");
print(final_classifiers);
#endif
models[i++] = { alphas, final_classifiers };
@ -151,9 +162,18 @@ std::array<std::array<np::Array<float64_t>, 2>, TS.size()> train(const np::Array
return models;
}
/**
* @brief Benchmark the trained classifiers on the training and testing sets.
*
* @param models List of trained models
* @param X_train_feat Training features
* @param y_train Training labels
* @param X_test_feat Testing features
* @param y_test Testing labels
*/
void testing_and_evaluating(const std::array<std::array<np::Array<float64_t>, 2>, TS.size()>& models, const np::Array<int32_t>& X_train_feat, const np::Array<uint8_t>& y_train, const np::Array<int32_t>& X_test_feat, const np::Array<uint8_t>& y_test) {
const std::array<int32_t, 5> testing_gaps = { 26, -19, 24, -19, 24 };
header({ "Testing", "Time spent (ns) (E)", "Formatted time spent (E)", "Time spent (ns) (T)", "Formatted time spent (T)" }, testing_gaps);
header(testing_gaps, { "Testing", "Time spent (ns) (E)", "Formatted time spent (E)", "Time spent (ns) (T)", "Formatted time spent (T)" });
std::array<std::array<float64_t, 8>, TS.size()> results;
size_t i = 0;
@ -189,7 +209,7 @@ void testing_and_evaluating(const std::array<std::array<np::Array<float64_t>, 2>
footer(testing_gaps);
const std::array<int32_t, 9> evaluating_gaps = { 19, -7, -6, -6, -6, -7, -6, -6, -6 };
header({ "Evaluating", "ACC (E)", "F1 (E)", "FN (E)", "FP (E)", "ACC (T)", "F1 (T)", "FN (T)", "FP (T)"}, evaluating_gaps);
header(evaluating_gaps, { "Evaluating", "ACC (E)", "F1 (E)", "FN (E)", "FP (E)", "ACC (T)", "F1 (T)", "FN (T)", "FP (T)"});
i = 0;
for (const size_t T : TS) {
@ -201,10 +221,16 @@ void testing_and_evaluating(const std::array<std::array<np::Array<float64_t>, 2>
footer(evaluating_gaps);
}
/**
* @brief Test if the each result is equals to other devices.
*
* Given ViolaJones is a fully deterministic algorithm. The results, regardless the device, should be the same,
* this function check this assertion.
*/
void unit_test(void) {
const std::chrono::system_clock::time_point unit_timestamp = perf_counter_ns();
const std::array<int32_t, 4> unit_gaps = { 37, -10, -18, 29};
header({ "Unit testing", "Test state", "Time spent (ns)", "Formatted time spent" }, unit_gaps);
header(unit_gaps, { "Unit testing", "Test state", "Time spent (ns)", "Formatted time spent" });
char title[BUFFER_SIZE] = { 0 };
char tmp_title[BUFFER_SIZE / 2] = { 0 };
@ -224,81 +250,104 @@ void unit_test(void) {
formatted_row(unit_gaps, { title, "Failed", thousand_sep(time_spent).c_str(), format_time_ns(time_spent).c_str() });
};
for (const char* label : { "train", "test" }) {
sprintf(file_cpu, OUT_DIR "/X_%s_ii_CPU.bin", label);
sprintf(file_gpu, OUT_DIR "/X_%s_ii_GPU.bin", label);
if (fs::exists(file_cpu) && fs::exists(file_gpu)) {
const np::Array<uint32_t> X_train_ii_cpu = load<uint32_t>(file_cpu);
const np::Array<uint32_t> X_train_ii_gpu = load<uint32_t>(file_gpu);
sprintf(tmp_title, "X_%s_ii", label);
sprintf(title, "%-22s - CPU vs GPU", tmp_title);
test_fnc(title, [&X_train_ii_cpu, &X_train_ii_gpu]{ return unit_test_cpu_vs_gpu<uint32_t>(X_train_ii_cpu, X_train_ii_gpu); });
for (const char* const label : { "train", "test" }) {
snprintf(file_cpu, BUFFER_SIZE, OUT_DIR "/X_%s_ii_CPU.bin", label);
snprintf(file_gpu, BUFFER_SIZE, OUT_DIR "/X_%s_ii_GPU.bin", label);
if (std::filesystem::exists(file_cpu) && std::filesystem::exists(file_gpu)) {
snprintf(tmp_title, BUFFER_SIZE / 2, "X_%s_ii", label);
snprintf(title, BUFFER_SIZE, "%-22s - CPU vs GPU", tmp_title);
test_fnc(title, [&file_cpu, &file_gpu]{
const np::Array<uint32_t> X_train_ii_cpu = load<uint32_t>(file_cpu);
const np::Array<uint32_t> X_train_ii_gpu = load<uint32_t>(file_gpu);
return unit_test_cpu_vs_gpu<uint32_t>(X_train_ii_cpu, X_train_ii_gpu);
});
}
snprintf(file_cpu, BUFFER_SIZE, OUT_DIR "/X_%s_feat_CPU.bin", label);
snprintf(file_gpu, BUFFER_SIZE, OUT_DIR "/X_%s_feat_GPU.bin", label);
uint8_t feat = 0;
char file_feat[BUFFER_SIZE] = { 0 };
sprintf(file_feat, OUT_DIR "/X_%s_feat_CPU.bin", label);
if (fs::exists(file_feat)) {
if (std::filesystem::exists(file_cpu)) {
strncpy(file_feat, file_cpu, BUFFER_SIZE);
feat = 1;
} else if (std::filesystem::exists(file_gpu)) {
strncpy(file_feat, file_gpu, BUFFER_SIZE);
feat = 2;
}
if (feat != 0) {
const np::Array<int32_t> X_feat = load<int32_t>(file_feat);
sprintf(file_gpu, OUT_DIR "/X_%s_feat_GPU.bin", label);
if (fs::exists(file_gpu)) {
const np::Array<int32_t> X_feat_gpu = load<int32_t>(file_gpu);
sprintf(tmp_title, "X_%s_feat", label);
sprintf(title, "%-22s - CPU vs GPU", tmp_title);
test_fnc(title, [&X_feat, &X_feat_gpu]{ return unit_test_cpu_vs_gpu<int32_t>(X_feat, X_feat_gpu); });
snprintf(file_gpu, BUFFER_SIZE, feat == 1 ? OUT_DIR "/X_%s_feat_GPU.bin" : OUT_DIR "/X_%s_feat_CPU.bin", label);
if (std::filesystem::exists(file_gpu)) {
snprintf(tmp_title, BUFFER_SIZE / 2, "X_%s_feat", label);
snprintf(title, BUFFER_SIZE, "%-22s - CPU vs GPU", tmp_title);
test_fnc(title, [&X_feat, &file_gpu]{
const np::Array<int32_t> X_feat_aux = load<int32_t>(file_gpu);
return unit_test_cpu_vs_gpu<int32_t>(X_feat, X_feat_aux);
});
}
sprintf(file_cpu, OUT_DIR "/X_%s_feat_argsort_CPU.bin", label);
snprintf(file_cpu, BUFFER_SIZE, OUT_DIR "/X_%s_feat_argsort_CPU.bin", label);
np::Array<uint16_t> X_feat_argsort_cpu;
uint8_t loaded = 0;
if (fs::exists(file_cpu)) {
X_feat_argsort_cpu = std::move(load<uint16_t>(file_cpu));
if (std::filesystem::exists(file_cpu)) {
++loaded;
sprintf(tmp_title, "X_%s_feat_argsort", label);
sprintf(title, "%-22s - CPU argsort", tmp_title);
test_fnc(title, [&X_feat, &X_feat_argsort_cpu]{ return unit_test_argsort_2d<int32_t>(X_feat, X_feat_argsort_cpu); });
snprintf(tmp_title, BUFFER_SIZE / 2, "X_%s_feat_argsort", label);
snprintf(title, BUFFER_SIZE, "%-22s - CPU argsort", tmp_title);
test_fnc(title, [&X_feat, &X_feat_argsort_cpu, &file_cpu]{
X_feat_argsort_cpu = load<uint16_t>(file_cpu);
return unit_test_argsort_2d<int32_t>(X_feat, X_feat_argsort_cpu);
});
}
sprintf(file_gpu, OUT_DIR "/X_%s_feat_argsort_GPU.bin", label);
snprintf(file_gpu, BUFFER_SIZE, OUT_DIR "/X_%s_feat_argsort_GPU.bin", label);
np::Array<uint16_t> X_feat_argsort_gpu;
if (fs::exists(file_gpu)) {
X_feat_argsort_gpu = std::move(load<uint16_t>(file_gpu));
if (std::filesystem::exists(file_gpu)) {
++loaded;
sprintf(tmp_title, "X_%s_feat_argsort", label);
sprintf(title, "%-22s - GPU argsort", tmp_title);
test_fnc(title, [&X_feat, &X_feat_argsort_gpu]{ return unit_test_argsort_2d<int32_t>(X_feat, X_feat_argsort_gpu); });
snprintf(tmp_title, BUFFER_SIZE / 2, "X_%s_feat_argsort", label);
snprintf(title, BUFFER_SIZE, "%-22s - GPU argsort", tmp_title);
test_fnc(title, [&X_feat, &X_feat_argsort_gpu, &file_gpu]{
X_feat_argsort_gpu = load<uint16_t>(file_gpu);
return unit_test_argsort_2d<int32_t>(X_feat, X_feat_argsort_gpu);
});
}
if (loaded == 2){
sprintf(tmp_title, "X_%s_feat_argsort", label);
sprintf(title, "%-22s - CPU vs GPU", tmp_title);
snprintf(tmp_title, BUFFER_SIZE / 2, "X_%s_feat_argsort", label);
snprintf(title, BUFFER_SIZE, "%-22s - CPU vs GPU", tmp_title);
test_fnc(title, [&X_feat_argsort_cpu, &X_feat_argsort_gpu]{ return unit_test_cpu_vs_gpu<uint16_t>(X_feat_argsort_cpu, X_feat_argsort_gpu); });
}
}
}
for (const size_t T : TS)
for (const char* label : { "alphas", "final_classifiers" }) {
sprintf(file_cpu, MODEL_DIR "/%s_%lu_CPU.bin", label, T);
sprintf(file_gpu, MODEL_DIR "/%s_%lu_GPU.bin", label, T);
if (fs::exists(file_cpu) && fs::exists(file_gpu)){
const np::Array<float64_t> cpu = load<float64_t>(file_cpu);
const np::Array<float64_t> gpu = load<float64_t>(file_gpu);
sprintf(tmp_title, "%s_%ld", label, T);
sprintf(title, "%-22s - CPU vs GPU", tmp_title);
test_fnc(title, [&cpu, &gpu]{ return unit_test_cpu_vs_gpu<float64_t>(cpu, gpu); });
for (const char* const label : { "alphas", "final_classifiers" }) {
snprintf(file_cpu, BUFFER_SIZE, MODEL_DIR "/%s_%lu_CPU.bin", label, T);
snprintf(file_gpu, BUFFER_SIZE, MODEL_DIR "/%s_%lu_GPU.bin", label, T);
if (std::filesystem::exists(file_cpu) && std::filesystem::exists(file_gpu)){
snprintf(tmp_title, BUFFER_SIZE / 2, "%s_%ld", label, T);
snprintf(title, BUFFER_SIZE, "%-22s - CPU vs GPU", tmp_title);
test_fnc(title, [&file_cpu, &file_gpu]{
const np::Array<float64_t> cpu = load<float64_t>(file_cpu);
const np::Array<float64_t> gpu = load<float64_t>(file_gpu);
return unit_test_cpu_vs_gpu<float64_t>(cpu, gpu);
});
}
}
const long long time_spent = duration_ns(perf_counter_ns() - unit_timestamp);
snprintf(title, BUFFER_SIZE, "%ld/%ld", n_success, n_total);
formatted_line(unit_gaps, "", "", "", "");
formatted_row(unit_gaps, { "Unit testing summary", title, thousand_sep(time_spent).c_str(), format_time_ns(time_spent).c_str() });
if (n_total == 0)
formatted_row(unit_gaps, { "Unit testing summary", "No files", thousand_sep(time_spent).c_str(), format_time_ns(time_spent).c_str() });
else {
snprintf(title, BUFFER_SIZE, "%ld/%ld", n_success, n_total);
formatted_line(unit_gaps, "", "", "", "");
formatted_row(unit_gaps, { "Unit testing summary", title, thousand_sep(time_spent).c_str(), format_time_ns(time_spent).c_str() });
}
footer(unit_gaps);
}
int main(){
int32_t main(void){
setlocale(LC_NUMERIC, ""); // Allow proper number display
const std::chrono::system_clock::time_point unit_timestamp = perf_counter_ns();
const std::array<int32_t, 3> unit_gaps = { 27, -18, 29 };
header({ "Unit testing", "Time spent (ns)", "Formatted time spent" }, unit_gaps);
header(unit_gaps, { "Unit testing", "Time spent (ns)", "Formatted time spent" });
#if GPU_BOOSTED
benchmark_function_void("Testing GPU capabilities 1D", unit_gaps[0], test_working, 50000);
benchmark_function_void("Testing GPU capabilities 2D", unit_gaps[0], test_working_2d, 200, 500);

View File

@ -8,22 +8,22 @@
void printProgress(const float64_t& percentage) noexcept {
const uint64_t val = static_cast<uint64_t>(percentage * 100);
const int lpad = static_cast<int>(percentage * PBWIDTH);
const int rpad = PBWIDTH - lpad;
printf("%3lu%% [%.*s%*s]\r", val, lpad, PBSTR, rpad, "");
fflush(stdout);
const int32_t lpad = static_cast<int32_t>(percentage * PBWIDTH);
const int32_t rpad = PBWIDTH - lpad;
fprintf(stderr, "%3lu%% [%.*s%*s]\r", val, lpad, PBSTR, rpad, "");
fflush(stderr);
}
void clearProgress() noexcept {
void clearProgress(void) noexcept {
// Progress bar width + space before + num space + space after
printf("%*c\r", PBWIDTH + 1 + 3 + 3, ' ');
fprintf(stderr, "%*c\r", PBWIDTH + 1 + 3 + 3, ' ');
}
template<typename T>
void test(const uint64_t& N) noexcept {
#if __DEBUG
printf("DETERMINISTIC for N=%s of %s sized %s\n", thousand_sep(N).c_str(), typeid(T).name(), format_byte_size(sizeof(T)).c_str());
print("Estimating memory footprint at : " + format_byte_size(3 * N * sizeof(T)));
printf("Estimating memory footprint at : %s\n", format_byte_size(3 * N * sizeof(T)).c_str());
#endif
T *a = new T[N], *b = new T[N], *c = new T[N];
@ -45,7 +45,7 @@ void test(const uint64_t& N) noexcept {
delete[] a, delete[] b, delete[] c;
}
void test_float() noexcept {
void test_float(void) noexcept {
std::cout << std::setprecision(1<<8);
const uint64_t N = static_cast<uint64_t>(1)<<28;
test<float128_t>(N);
@ -60,4 +60,3 @@ void test_float() noexcept {
//printf("%.128lf\n", static_cast<float64_t>(1) / 3);
//printf("%.128f\n", static_cast<float>(1) / 3);
}

View File

@ -1,19 +1,17 @@
#include "toolbox.hpp"
#include <numeric>
#include <algorithm>
static constexpr uint64_t u64(const double& n) noexcept { return static_cast<uint64_t>(n); }
inline static constexpr uint64_t u64(const double& n) noexcept { return static_cast<uint64_t>(n); }
static const constexpr size_t N_TIMES = 11;
static const constexpr std::array<const char*, N_TIMES> time_formats = { "ns", "µs", "ms", "s", "m", "h", "j", "w", "M", "y", "c" };
static const constexpr std::array<const char*, N_TIMES> time_formats = { "ns", "us", "ms", "s", "m", "h", "j", "w", "M", "y", "c" };
static const constexpr std::array<uint64_t, N_TIMES> time_numbers = { 1, u64(1e3), u64(1e6), u64(1e9), u64(6e10), u64(36e11), u64(864e11),
u64(6048e11), u64(26784e11), u64(31536e12), u64(31536e14) };
/**
* @brief Format the time in seconds in human readable format.
*
* @param time Time in seconds
* @return std::string The formatted human readable string.
* @param time number of seconds
* @return The formatted human readable string
*/
std::string format_time(uint64_t time) noexcept {
if (time == 0)
@ -21,8 +19,8 @@ std::string format_time(uint64_t time) noexcept {
std::string s = "";
uint64_t res;
for (int i = N_TIMES - 1; i >= 3; --i) {
const uint64_t time_number = time_numbers[i] / 1e9; // Converting nanosecond timestamp to second
for (int32_t i = N_TIMES - 1; i >= 3; --i) {
const uint64_t time_number = time_numbers[i] / u64(1e9); // Converting nanosecond timestamp to second
if (time >= time_number) {
res = time / time_number;
time %= time_number;
@ -30,8 +28,8 @@ std::string format_time(uint64_t time) noexcept {
}
}
if (s.back() == ' ')
s.pop_back();
// Remove trailing character
s.pop_back();
return s;
}
@ -40,7 +38,7 @@ std::string format_time(uint64_t time) noexcept {
* @brief Format the time in nanoseconds in human readable format.
*
* @param time Time in nanoseconds
* @return std::string The formatted human readable string.
* @return std::string The formatted human readable string
*/
std::string format_time_ns(uint64_t time) noexcept {
if (time == 0)
@ -48,7 +46,7 @@ std::string format_time_ns(uint64_t time) noexcept {
std::string s = "";
uint64_t res;
for (int i = N_TIMES - 1; i >= 0; --i) {
for (int32_t i = N_TIMES - 1; i >= 0; --i) {
if (time >= time_numbers[i]) {
res = time / time_numbers[i];
time %= time_numbers[i];
@ -56,8 +54,8 @@ std::string format_time_ns(uint64_t time) noexcept {
}
}
if (s.back() == ' ')
s.pop_back();
// Remove trailing character
s.pop_back();
return s;
}
@ -71,7 +69,7 @@ static const constexpr uint64_t total_bytes = u64(1)<<(10 * (N_BYTES - 1));
* See more : https://en.wikipedia.org/wiki/JEDEC_memory_standards
*
* @param bytes Number of bytes
* @return std::string JEDEC compliant formatted number of bytes
* @return JEDEC compliant formatted number of bytes
*/
std::string format_byte_size(uint64_t bytes) noexcept {
if (bytes == 0)
@ -95,6 +93,13 @@ std::string format_byte_size(uint64_t bytes) noexcept {
return s;
}
/**
* @brief Format a number with a separator (i.e. 1000 as 1,000)
*
* @param k number to format
* @param separator used between each thouand
* @return Formatted number
*/
std::string thousand_sep(uint64_t k, const char& separator) noexcept {
const std::string n = std::to_string(k);
const uint64_t st_size = n.length() + (n.length() - 1) / 3;
@ -111,4 +116,3 @@ std::string thousand_sep(uint64_t k, const char& separator) noexcept {
return s;
}

View File

@ -3,6 +3,13 @@
#include <string>
#include <stdint.h>
/**
* @brief Print a formatted row of titles with of gaps seperated by a separator.
*
* @param gaps List of size gaps
* @param titles List of titles
* @param separator Separator character between each gap
*/
template<size_t N>
constexpr void formatted_row(const std::array<int32_t, N>& gaps, const std::array<const char* const, N>& titles,
const char* const separator = "") noexcept {
@ -11,10 +18,19 @@ constexpr void formatted_row(const std::array<int32_t, N>& gaps, const std::arra
printf("%s\n", separator);
}
/**
* @brief Print a formatted line of repeated characters.
*
* @param gaps List of size gaps
* @param right Character on the left
* @param middle Character between each separator
* @param separator Separator character between each gap
* @param left Character on the right
*/
template<size_t N>
constexpr void formatted_line(const std::array<int32_t, N>& gaps, const char* const right, const char* const middle,
const char* const separator, const char* const left) noexcept {
printf("%s", right);
constexpr void formatted_line(const std::array<int32_t, N>& gaps, const char* const left, const char* const middle,
const char* const separator, const char* const right) noexcept {
printf("%s", left);
for(size_t i = 0; i < N; ++i){
for(int32_t j = std::abs(gaps[i]) + 2; j > 0; --j)
printf("%s", separator);
@ -22,16 +38,27 @@ constexpr void formatted_line(const std::array<int32_t, N>& gaps, const char* co
printf("%s", middle);
}
printf("%s\n", left);
printf("%s\n", right);
}
/**
* @brief Print a formatted header with the given titles and sizes.
*
* @param gaps List of size gaps
* @param titles List of titles
*/
template<size_t N>
constexpr void header(const std::array<const char* const, N>& titles, const std::array<int32_t, N>& gaps) noexcept {
constexpr void header(const std::array<int32_t, N>& gaps, const std::array<const char* const, N>& titles) noexcept {
formatted_line(gaps, "", "", "", "");
formatted_row(gaps, titles);
formatted_line(gaps, "", "", "", "");
}
/**
* @brief Print a formatted footer with the given sizes.
*
* @param gaps List of size gaps
*/
template<size_t N>
constexpr inline void footer(const std::array<int32_t, N>& gaps) noexcept {
formatted_line(gaps, "", "", "", "");
@ -40,7 +67,36 @@ constexpr inline void footer(const std::array<int32_t, N>& gaps) noexcept {
#define duration_ns(a) std::chrono::duration_cast<std::chrono::nanoseconds>(a).count()
#define perf_counter_ns() std::chrono::high_resolution_clock::now()
/**
* @brief Format the time in seconds in human readable format.
*
* @param time number of seconds
* @return The formatted human readable string
*/
std::string format_time(uint64_t) noexcept;
/**
* @brief Format the time in nanoseconds in human readable format.
*
* @param time Time in nanoseconds
* @return std::string The formatted human readable string
*/
std::string format_time_ns(uint64_t) noexcept;
/**
* @brief Convert the number of byte in JEDEC standard form.
* See more : https://en.wikipedia.org/wiki/JEDEC_memory_standards
*
* @param bytes Number of bytes
* @return JEDEC compliant formatted number of bytes
*/
std::string format_byte_size(uint64_t) noexcept;
/**
* @brief Format a number with a separator (i.e. 1000 as 1,000)
*
* @param k number to format
* @param separator used between each thouand
* @return Formatted number
*/
std::string thousand_sep(uint64_t, const char& = ',') noexcept;

View File

@ -2,30 +2,44 @@
#include <iostream>
#include <assert.h>
/**
* @brief Test if a given result is equal of the expected one and log result
*
* @tparam T type of returning values
* @param name of the unit test
* @param expected result of the function call
* @param result of the function
*/
template<typename T>
void Assert(const char* name, const T& expected, const T& result) noexcept {
static void Assert(const char* const name, const T& expected, const T& result) noexcept {
if(expected != result){
std::cerr << "For test named " << name << " Expected '" << expected << "' but got '" << result << "' instead\n";
assert(false);
}
}
/**
* @brief Test suite for the format_byte_size output
*/
void format_byte_size_test(void) noexcept {
Assert("format_byte_size null", std::string("0B"), format_byte_size(static_cast<uint64_t>(0)));
Assert("format_byte_size byte", std::string("1B"), format_byte_size(static_cast<uint64_t>(1)));
Assert("format_byte_size kilobyte", std::string("1KB"), format_byte_size(static_cast<uint64_t>(1)<<10));
Assert("format_byte_size megabyte", std::string("1MB"), format_byte_size(static_cast<uint64_t>(1)<<20));
Assert("format_byte_size gigabyte", std::string("1GB"), format_byte_size(static_cast<uint64_t>(1)<<30));
Assert("format_byte_size terabyte", std::string("1TB"), format_byte_size(static_cast<uint64_t>(1)<<40));
Assert("format_byte_size petabyte", std::string("1PB"), format_byte_size(static_cast<uint64_t>(1)<<50));
Assert("format_byte_size exabyte", std::string("1EB"), format_byte_size(static_cast<uint64_t>(1)<<60));
Assert("format_byte_size null", std::string("0B"), format_byte_size(static_cast<uint64_t>(0)));
Assert("format_byte_size byte", std::string("1B"), format_byte_size(static_cast<uint64_t>(1)));
Assert("format_byte_size kilobyte", std::string("1KB"), format_byte_size(static_cast<uint64_t>(1)<<10));
Assert("format_byte_size megabyte", std::string("1MB"), format_byte_size(static_cast<uint64_t>(1)<<20));
Assert("format_byte_size gigabyte", std::string("1GB"), format_byte_size(static_cast<uint64_t>(1)<<30));
Assert("format_byte_size terabyte", std::string("1TB"), format_byte_size(static_cast<uint64_t>(1)<<40));
Assert("format_byte_size petabyte", std::string("1PB"), format_byte_size(static_cast<uint64_t>(1)<<50));
Assert("format_byte_size exabyte", std::string("1EB"), format_byte_size(static_cast<uint64_t>(1)<<60));
// Unsupported due to number of byte bigger than currently supported by ISO c++
//Assert("format_byte_size zettabyte", std::string("1ZB"), format_byte_size(static_cast<uint64_t>(1)<<70));
//Assert("format_byte_size yottabyte", std::string("1YB"), format_byte_size(static_cast<uint64_t>(1)<<80));
//Assert("format_byte_size zettabyte", std::string("1ZB"), format_byte_size(static_cast<uint64_t>(1)<<70));
//Assert("format_byte_size yottabyte", std::string("1YB"), format_byte_size(static_cast<uint64_t>(1)<<80));
// uint64_t_MAX == 2**64 == 18446744073709551615I64u == -1
Assert("format_byte_size max", std::string("15EB 1023PB 1023TB 1023GB 1023MB 1023KB 1023B"), format_byte_size(static_cast<uint64_t>(-1)));
}
/**
* @brief Test suite for the format_time output
*/
void format_time_test(void) noexcept {
// https://en.wikipedia.org/wiki/Unit_of_time
Assert("format_time null", std::string("0s"), format_time(static_cast<uint64_t>(0)));
@ -80,66 +94,72 @@ void format_time_test(void) noexcept {
Assert("format_time max", std::string("5849424173c 55y 3w 5j 7h 15s"), format_time(static_cast<uint64_t>(-1)));
}
/**
* @brief Test suite for the format_time_ns output
*/
void format_time_ns_test(void) noexcept {
// https://en.wikipedia.org/wiki/Unit_of_time
Assert("format_time_ns null", std::string("0ns"), format_time_ns(static_cast<uint64_t>(0)));
Assert("format_time_ns nanosecond", std::string("1ns"), format_time_ns(static_cast<uint64_t>(1)));
Assert("format_time_ns shake", std::string("10ns"), format_time_ns(static_cast<uint64_t>(10)));
Assert("format_time_ns microsecond", std::string("1µs"), format_time_ns(static_cast<uint64_t>(1e3)));
Assert("format_time_ns millisecond", std::string("1ms"), format_time_ns(static_cast<uint64_t>(1e6)));
Assert("format_time_ns centisecond", std::string("10ms"), format_time_ns(static_cast<uint64_t>(1e7)));
Assert("format_time_ns decisecond", std::string("100ms"), format_time_ns(static_cast<uint64_t>(1e8)));
Assert("format_time_ns second", std::string("1s"), format_time_ns(static_cast<uint64_t>(1e9)));
Assert("format_time_ns decasecond", std::string("10s"), format_time_ns(static_cast<uint64_t>(1e10)));
Assert("format_time_ns minute", std::string("1m"), format_time_ns(static_cast<uint64_t>(6e10)));
Assert("format_time_ns milliday", std::string("1m 26s 400ms"), format_time_ns(static_cast<uint64_t>(864e8)));
Assert("format_time_ns hectosecond", std::string("1m 40s"), format_time_ns(static_cast<uint64_t>(1e11)));
Assert("format_time_ns kilosecond", std::string("16m 40s"), format_time_ns(static_cast<uint64_t>(1e12)));
Assert("format_time_ns hour", std::string("1h"), format_time_ns(static_cast<uint64_t>(36e11)));
Assert("format_time_ns day", std::string("1j"), format_time_ns(static_cast<uint64_t>(864e11)));
Assert("format_time_ns week/sennight", std::string("1w"), format_time_ns(static_cast<uint64_t>(6048e11)));
Assert("format_time_ns megasecond", std::string("1w 4j 13h 46m 40s"), format_time_ns(static_cast<uint64_t>(1e15)));
Assert("format_time_ns fortnight", std::string("2w"), format_time_ns(static_cast<uint64_t>(12096e11)));
Assert("format_time_ns lunar month (draconitic)", std::string("3w 6j 5h 5m 35s 800ms"), format_time_ns(static_cast<uint64_t>(23511358e8)));
Assert("format_time_ns lunar month (tropical)", std::string("3w 6j 7h 43m 4s 700ms"), format_time_ns(static_cast<uint64_t>(23605847e8)));
Assert("format_time_ns lunar month (sidereal)", std::string("3w 6j 7h 43m 11s 600ms"), format_time_ns(static_cast<uint64_t>(23605916e8)));
Assert("format_time_ns lunar month (anomalistic)", std::string("3w 6j 13h 18m 33s 200ms"), format_time_ns(static_cast<uint64_t>(23807132e8)));
Assert("format_time_ns lunar month (synodic)", std::string("4w 1j 12h 44m 2s 900ms"), format_time_ns(static_cast<uint64_t>(25514429e8)));
Assert("format_time_ns month", std::string("1M"), format_time_ns(static_cast<uint64_t>(26784e11)));
Assert("format_time_ns quarantine", std::string("1M 1w 2j"), format_time_ns(static_cast<uint64_t>(3456e12)));
Assert("format_time_ns semester", std::string("4M 2j"), format_time_ns(static_cast<uint64_t>(108864e11)));
Assert("format_time_ns lunar year", std::string("11M 1w 6j 8h 52m 48s"), format_time_ns(static_cast<uint64_t>(30617568e9)));
Assert("format_time_ns year", std::string("1y"), format_time_ns(static_cast<uint64_t>(31536e12)));
Assert("format_time_ns tropical year", std::string("1y 5h 48m 45s 216ms"), format_time_ns(static_cast<uint64_t>(31556925216e6)));
Assert("format_time_ns gregorian year", std::string("1y 5h 49m 12s"), format_time_ns(static_cast<uint64_t>(31556952e9)));
Assert("format_time_ns sidereal year", std::string("1y 6h 9m 9s 763ms 545µs 600ns"), format_time_ns(static_cast<uint64_t>(315581497635456e2)));
Assert("format_time_ns leap year", std::string("1y 1j"), format_time_ns(static_cast<uint64_t>(316224e11)));
Assert("format_time_ns olympiad", std::string("4y"), format_time_ns(static_cast<uint64_t>(126144e12)));
Assert("format_time_ns lusturm", std::string("5y"), format_time_ns(static_cast<uint64_t>(15768e13)));
Assert("format_time_ns decade", std::string("10y"), format_time_ns(static_cast<uint64_t>(31536e13)));
Assert("format_time_ns indiction", std::string("15y"), format_time_ns(static_cast<uint64_t>(47304e13)));
Assert("format_time_ns score", std::string("20y"), format_time_ns(static_cast<uint64_t>(63072e13)));
Assert("format_time_ns gigasecond", std::string("31y 8M 1w 4j 1h 46m 40s"), format_time_ns(static_cast<uint64_t>(1e18)));
Assert("format_time_ns jubilee", std::string("50y"), format_time_ns(static_cast<uint64_t>(15768e14)));
Assert("format_time_ns century", std::string("1c"), format_time_ns(static_cast<uint64_t>(31536e14)));
Assert("format_time_ns null", std::string("0ns"), format_time_ns(static_cast<uint64_t>(0)));
Assert("format_time_ns nanosecond", std::string("1ns"), format_time_ns(static_cast<uint64_t>(1)));
Assert("format_time_ns shake", std::string("10ns"), format_time_ns(static_cast<uint64_t>(10)));
Assert("format_time_ns microsecond", std::string("1us"), format_time_ns(static_cast<uint64_t>(1e3)));
Assert("format_time_ns millisecond", std::string("1ms"), format_time_ns(static_cast<uint64_t>(1e6)));
Assert("format_time_ns centisecond", std::string("10ms"), format_time_ns(static_cast<uint64_t>(1e7)));
Assert("format_time_ns decisecond", std::string("100ms"), format_time_ns(static_cast<uint64_t>(1e8)));
Assert("format_time_ns second", std::string("1s"), format_time_ns(static_cast<uint64_t>(1e9)));
Assert("format_time_ns decasecond", std::string("10s"), format_time_ns(static_cast<uint64_t>(1e10)));
Assert("format_time_ns minute", std::string("1m"), format_time_ns(static_cast<uint64_t>(6e10)));
Assert("format_time_ns milliday", std::string("1m 26s 400ms"), format_time_ns(static_cast<uint64_t>(864e8)));
Assert("format_time_ns hectosecond", std::string("1m 40s"), format_time_ns(static_cast<uint64_t>(1e11)));
Assert("format_time_ns kilosecond", std::string("16m 40s"), format_time_ns(static_cast<uint64_t>(1e12)));
Assert("format_time_ns hour", std::string("1h"), format_time_ns(static_cast<uint64_t>(36e11)));
Assert("format_time_ns day", std::string("1j"), format_time_ns(static_cast<uint64_t>(864e11)));
Assert("format_time_ns week/sennight", std::string("1w"), format_time_ns(static_cast<uint64_t>(6048e11)));
Assert("format_time_ns megasecond", std::string("1w 4j 13h 46m 40s"), format_time_ns(static_cast<uint64_t>(1e15)));
Assert("format_time_ns fortnight", std::string("2w"), format_time_ns(static_cast<uint64_t>(12096e11)));
Assert("format_time_ns lunar month (draconitic)", std::string("3w 6j 5h 5m 35s 800ms"), format_time_ns(static_cast<uint64_t>(23511358e8)));
Assert("format_time_ns lunar month (tropical)", std::string("3w 6j 7h 43m 4s 700ms"), format_time_ns(static_cast<uint64_t>(23605847e8)));
Assert("format_time_ns lunar month (sidereal)", std::string("3w 6j 7h 43m 11s 600ms"), format_time_ns(static_cast<uint64_t>(23605916e8)));
Assert("format_time_ns lunar month (anomalistic)", std::string("3w 6j 13h 18m 33s 200ms"), format_time_ns(static_cast<uint64_t>(23807132e8)));
Assert("format_time_ns lunar month (synodic)", std::string("4w 1j 12h 44m 2s 900ms"), format_time_ns(static_cast<uint64_t>(25514429e8)));
Assert("format_time_ns month", std::string("1M"), format_time_ns(static_cast<uint64_t>(26784e11)));
Assert("format_time_ns quarantine", std::string("1M 1w 2j"), format_time_ns(static_cast<uint64_t>(3456e12)));
Assert("format_time_ns semester", std::string("4M 2j"), format_time_ns(static_cast<uint64_t>(108864e11)));
Assert("format_time_ns lunar year", std::string("11M 1w 6j 8h 52m 48s"), format_time_ns(static_cast<uint64_t>(30617568e9)));
Assert("format_time_ns year", std::string("1y"), format_time_ns(static_cast<uint64_t>(31536e12)));
Assert("format_time_ns tropical year", std::string("1y 5h 48m 45s 216ms"), format_time_ns(static_cast<uint64_t>(31556925216e6)));
Assert("format_time_ns gregorian year", std::string("1y 5h 49m 12s"), format_time_ns(static_cast<uint64_t>(31556952e9)));
Assert("format_time_ns sidereal year", std::string("1y 6h 9m 9s 763ms 545us 600ns"), format_time_ns(static_cast<uint64_t>(315581497635456e2)));
Assert("format_time_ns leap year", std::string("1y 1j"), format_time_ns(static_cast<uint64_t>(316224e11)));
Assert("format_time_ns olympiad", std::string("4y"), format_time_ns(static_cast<uint64_t>(126144e12)));
Assert("format_time_ns lusturm", std::string("5y"), format_time_ns(static_cast<uint64_t>(15768e13)));
Assert("format_time_ns decade", std::string("10y"), format_time_ns(static_cast<uint64_t>(31536e13)));
Assert("format_time_ns indiction", std::string("15y"), format_time_ns(static_cast<uint64_t>(47304e13)));
Assert("format_time_ns score", std::string("20y"), format_time_ns(static_cast<uint64_t>(63072e13)));
Assert("format_time_ns gigasecond", std::string("31y 8M 1w 4j 1h 46m 40s"), format_time_ns(static_cast<uint64_t>(1e18)));
Assert("format_time_ns jubilee", std::string("50y"), format_time_ns(static_cast<uint64_t>(15768e14)));
Assert("format_time_ns century", std::string("1c"), format_time_ns(static_cast<uint64_t>(31536e14)));
// Cannot use number bigger than currently supported ISO C++
//Assert("format_time_ns millennium", std::string("10c"), format_time_ns(static_cast<uint64_t>(31536e15)));
//Assert("format_time_ns age", std::string("257c 72y"), format_time_ns(static_cast<uint64_t>(812745792e12)));
//Assert("format_time_ns terasecond", std::string("3170c 97y 10M 3w 4j 17h 46m 40s"), format_time_ns(static_cast<uint64_t>(1e22)));
//Assert("format_time_ns megaannum", std::string("10000c"), format_time_ns(static_cast<uint64_t>(31536e18)));
//Assert("format_time_ns petasecond", std::string("317097c 91y 11M 2w 4j 1h 46m 40s"), format_time_ns(static_cast<uint64_t>(1e24)));
//Assert("format_time_ns galactic year", std::string("2300000c"), format_time_ns(static_cast<uint64_t>(725328e19)));
//Assert("format_time_ns eon", std::string("10000000c"), format_time_ns(static_cast<uint64_t>(31536e21)));
//Assert("format_time_ns kalpa", std::string("43200000c"), format_time_ns(static_cast<uint64_t>(13623552e19)));
//Assert("format_time_ns exasecond", std::string("317097919c 83y 9M 1h 46m 40s"), format_time_ns(static_cast<uint64_t>(1e27)));
//Assert("format_time_ns zettasecond", std::string(""), format_time_ns(static_cast<uint64_t>(1e30)));
//Assert("format_time_ns yottasecond", std::string(""), format_time_ns(static_cast<uint64_t>(1e33)));
//Assert("format_time_ns ronnasecond", std::string(""), format_time_ns(static_cast<uint64_t>(1e36)));
//Assert("format_time_ns quettasecond", std::string(""), format_time_ns(static_cast<uint64_t>(1e39)));
//Assert("format_time_ns millennium", std::string("10c"), format_time_ns(static_cast<uint64_t>(31536e15)));
//Assert("format_time_ns age", std::string("257c 72y"), format_time_ns(static_cast<uint64_t>(812745792e12)));
//Assert("format_time_ns terasecond", std::string("3170c 97y 10M 3w 4j 17h 46m 40s"), format_time_ns(static_cast<uint64_t>(1e22)));
//Assert("format_time_ns megaannum", std::string("10000c"), format_time_ns(static_cast<uint64_t>(31536e18)));
//Assert("format_time_ns petasecond", std::string("317097c 91y 11M 2w 4j 1h 46m 40s"), format_time_ns(static_cast<uint64_t>(1e24)));
//Assert("format_time_ns galactic year", std::string("2300000c"), format_time_ns(static_cast<uint64_t>(725328e19)));
//Assert("format_time_ns eon", std::string("10000000c"), format_time_ns(static_cast<uint64_t>(31536e21)));
//Assert("format_time_ns kalpa", std::string("43200000c"), format_time_ns(static_cast<uint64_t>(13623552e19)));
//Assert("format_time_ns exasecond", std::string("317097919c 83y 9M 1h 46m 40s"), format_time_ns(static_cast<uint64_t>(1e27)));
//Assert("format_time_ns zettasecond", std::string(""), format_time_ns(static_cast<uint64_t>(1e30)));
//Assert("format_time_ns yottasecond", std::string(""), format_time_ns(static_cast<uint64_t>(1e33)));
//Assert("format_time_ns ronnasecond", std::string(""), format_time_ns(static_cast<uint64_t>(1e36)));
//Assert("format_time_ns quettasecond", std::string(""), format_time_ns(static_cast<uint64_t>(1e39)));
// uint64_t_MAX == 2**64 == 18446744073709551615I64u == -1
Assert("format_time_ns max", std::string("5c 84y 11M 2j 23h 34m 33s 709ms 551µs 615ns"), format_time_ns(static_cast<uint64_t>(-1)));
Assert("format_time_ns max", std::string("5c 84y 11M 2j 23h 34m 33s 709ms 551us 615ns"), format_time_ns(static_cast<uint64_t>(-1)));
}
/**
* @brief Test suite for the thousand_sep output
*/
void thousand_sep_test(void) noexcept {
// https://en.wikipedia.org/wiki/Names_of_large_numbers
Assert("thousand_sep null", std::string("0"), thousand_sep(static_cast<uint64_t>(0)));
@ -182,4 +202,3 @@ void thousand_sep_test(void) noexcept {
// uint64_t_MAX == 2**64 == 18446744073709551615I64u == -1
Assert("thousand_sep max", std::string("18,446,744,073,709,551,615"), thousand_sep(static_cast<uint64_t>(-1)));
}

View File

@ -1,6 +1,21 @@
#pragma once
/**
* @brief Test suite for the format_byte_size output
*/
void format_byte_size_test(void) noexcept;
/**
* @brief Test suite for the format_time output
*/
void format_time_test(void) noexcept;
/**
* @brief Test suite for the format_time_ns output
*/
void format_time_ns_test(void) noexcept;
/**
* @brief Test suite for the thousand_sep output
*/
void thousand_sep_test(void) noexcept;

19
docker-compose.yaml Normal file
View File

@ -0,0 +1,19 @@
services:
downloader:
extends:
file: ./downloader/docker-compose.yaml
service: downloader
violajones-cpp:
extends:
file: ./cpp/docker-compose.yaml
service: violajones-cpp
depends_on:
downloader:
condition: service_completed_successfully
violajones-python:
extends:
file: ./python/docker-compose.yaml
service: violajones-python
depends_on:
downloader:
condition: service_completed_successfully

View File

@ -1,42 +0,0 @@
#!/usr/bin/env bash
#!/bin/sh
# Exit if any of the command doesn't exit with code 0
set -e
EXEC_DIR=$1
test -z $EXEC_DIR && EXEC_DIR=.
DATA_LOCATION=$EXEC_DIR/data
mkdir -p $DATA_LOCATION
if [ ! -f $DATA_LOCATION/X_train.bin ] || [ ! -f $DATA_LOCATION/X_test.bin ] \
|| [ ! -f $DATA_LOCATION/y_train.bin ] || [ ! -f $DATA_LOCATION/y_test.bin ]; then
#if true; then
if [ ! -f $DATA_LOCATION/faces.tar.gz ]; then
echo 'Downloading raw dataset'
curl -o $DATA_LOCATION/faces.tar.gz http://www.ai.mit.edu/courses/6.899/lectures/faces.tar.gz
fi
echo 'Extracting raw files'
tar xzf $DATA_LOCATION/faces.tar.gz -C $DATA_LOCATION
rm $DATA_LOCATION/README
rm $DATA_LOCATION/svm.*
echo 'Extracting raw train set'
tar xzf $DATA_LOCATION/face.train.tar.gz -C $DATA_LOCATION
rm $DATA_LOCATION/face.train.tar.gz
echo 'Extracting raw test set'
tar xzf $DATA_LOCATION/face.test.tar.gz -C $DATA_LOCATION
rm $DATA_LOCATION/face.test.tar.gz
echo 'Converting raw dataset to bin file'
source $EXEC_DIR/python/activate.sh $EXEC_DIR
python $EXEC_DIR/python/convert_dataset.py $DATA_LOCATION
echo 'Removing leftovers'
rm -rf $DATA_LOCATION/train
rm -rf $DATA_LOCATION/test
echo 'Done !'
fi

11
downloader/Dockerfile Normal file
View File

@ -0,0 +1,11 @@
FROM alpine:3.19.1
RUN apk add --no-cache curl=8.5.0-r0 python3=3.11.9-r0 && rm -rf /var/cache/apk*
WORKDIR /home/ViolaJones/downloader
COPY requirements.txt activate.sh ./
RUN ./activate.sh
COPY download_data.sh convert_dataset.py ./
CMD ["./download_data.sh"]

27
downloader/activate.sh Executable file
View File

@ -0,0 +1,27 @@
#!/bin/sh
# Exit if any of the command doesn't exit with code 0
set -e
test -z "$EXEC_DIR" && EXEC_DIR=.
test -z "$VENV_PATH" && VENV_PATH="$EXEC_DIR/venv"
activate(){
if [ ! -d "$VENV_PATH" ]; then
echo 'Creating python virtual environnement'
python -m venv "$VENV_PATH"
echo 'Activating virtual environnement'
activate
echo 'Updating base pip packages'
python -m pip install -U setuptools pip
echo 'Installing requirements'
pip install -r requirements.txt
elif [ -f "$VENV_PATH"/Scripts/activate ]; then . "$VENV_PATH"/Scripts/activate
elif [ -f "$VENV_PATH"/bin/activate ]; then . "$VENV_PATH"/bin/activate
else
echo 'Python virtual environnement not detected'
exit 1
fi
}
activate

View File

@ -0,0 +1,60 @@
from io import BufferedReader
from tqdm import tqdm
from functools import partial
from sys import argv
import numpy as np
from os import path, listdir
# Induce determinism
np.random.seed(133742)
# Makes the "leave" argument default to False
tqdm = partial(tqdm, leave = False)
def read_pgm(pgm_file: BufferedReader) -> np.ndarray:
"""Read the data of a PGM file
Args:
pgm_file (BufferedReader): PGM File
Returns:
np.ndarray: PGM data
"""
assert (f := pgm_file.readline()) == b'P5\n', f"Incorrect file format: {f}"
(width, height) = [int(i) for i in pgm_file.readline().split()]
assert width > 0 and height > 0, f"Incorrect dimensions: {width}x{height}"
assert (depth := int(pgm_file.readline())) < 256, f"Incorrect depth: {depth}"
buff = np.empty(height * width, dtype = np.uint8)
for i in range(buff.shape[0]):
buff[i] = ord(pgm_file.read(1))
return buff.reshape((height, width))
def __main__(data_path: str) -> None:
"""Read the data of every PGM file and output it in data files
Args:
data_path (str): Path of the PGM files
"""
for set_name in tqdm(["train", "test"], desc = "set name"):
X, y = [], []
for y_i, label in enumerate(tqdm(["non-face", "face"], desc = "label")):
for filename in tqdm(listdir(f"{data_path}/{set_name}/{label}"), desc = "Reading pgm file"):
with open(f"{data_path}/{set_name}/{label}/{filename}", "rb") as face:
X.append(read_pgm(face))
y.append(y_i)
X, y = np.asarray(X), np.asarray(y)
idx = np.random.permutation(y.shape[0])
X, y = X[idx], y[idx]
for org, s in tqdm(zip("Xy", [X, y]), desc = f"Writing {set_name}"):
with open(f"{data_path}/{org}_{set_name}.bin", "w") as out:
out.write(f'{str(s.shape)[1:-1].replace(",", "")}\n')
raw = s.ravel()
for s_i in tqdm(raw[:-1], desc = f"Writing {org}"):
out.write(f"{s_i} ")
out.write(str(raw[-1]))
if __name__ == "__main__":
__main__(argv[1]) if len(argv) == 2 else print(f"Usage: python {__file__[__file__.rfind(path.sep) + 1:]} ./data_location")

View File

@ -0,0 +1,6 @@
services:
downloader:
image: saundersp/violajones-downloader
build: .
volumes:
- ../data:/home/ViolaJones/data

38
downloader/download_data.sh Executable file
View File

@ -0,0 +1,38 @@
#!/bin/sh
# Exit if any of the command doesn't exit with code 0
set -e
test -z "$EXEC_DIR" && EXEC_DIR=.
DATA_PATH="$EXEC_DIR/../data"
test ! -d "$DATA_PATH" && mkdir -v "$DATA_PATH"
if [ ! -f "$DATA_PATH"/X_train.bin ] || [ ! -f "$DATA_PATH"/X_test.bin ] \
|| [ ! -f "$DATA_PATH"/y_train.bin ] || [ ! -f "$DATA_PATH"/y_test.bin ]; then
if [ ! -f "$DATA_PATH"/faces.tar.gz ]; then
echo 'Downloading raw dataset'
curl -o "$DATA_PATH"/faces.tar.gz http://www.ai.mit.edu/courses/6.899/lectures/faces.tar.gz
fi
echo 'Extracting raw files'
tar xvzf "$DATA_PATH"/faces.tar.gz -C "$DATA_PATH"
rm -v "$DATA_PATH"/README "$DATA_PATH"/svm.*
echo 'Extracting raw train set'
tar xvzf "$DATA_PATH"/face.train.tar.gz -C "$DATA_PATH"
rm -v "$DATA_PATH"/face.train.tar.gz
echo 'Extracting raw test set'
tar xvzf "$DATA_PATH"/face.test.tar.gz -C "$DATA_PATH"
rm -v "$DATA_PATH"/face.test.tar.gz
echo 'Converting raw dataset to bin file'
export EXEC_DIR
. "$EXEC_DIR"/activate.sh
python "$EXEC_DIR"/convert_dataset.py "$DATA_PATH"
echo 'Removing leftovers'
rm -rvf "$DATA_PATH"/train "$DATA_PATH"/test
echo 'Done !'
fi

View File

@ -0,0 +1,2 @@
numpy==1.26.4
tqdm==4.66.2

12
python/Dockerfile Normal file
View File

@ -0,0 +1,12 @@
FROM nvidia/cuda:12.4.1-devel-ubi9 as builder
RUN dnf install -y python3.11-3.11.5-1.el9_3 && dnf clean all
RUN ln -s /usr/bin/python3 /usr/bin/python
WORKDIR /home/ViolaJones/python
COPY Makefile activate.sh requirements.txt ./
RUN make venv
COPY *.py ./
ENTRYPOINT ["make"]
CMD ["start"]

View File

@ -1,34 +1,85 @@
DATA := ../data/X_train.bin ../data/X_test.bin ../data/y_train.bin ../data/y_test.bin
MODELS_DIR := models
OUT_DIR := out
DATA_PATH := ../data
DATA := $(DATA_PATH)/X_train.bin $(DATA_PATH)/X_test.bin $(DATA_PATH)/y_train.bin $(DATA_PATH)/y_test.bin
.PHONY: all start reset
.PHONY: all
all: venv
all: ${DATA}
${DATA}:
@bash ../download_data.sh ..
$(DATA):
@echo 'Missing $(DATA) files, use downloader first' && exit 1
.PHONY: venv
venv:
@bash -c 'source activate.sh'
@sh -c '. ./activate.sh'
start: ${DATA} venv
@bash -c 'source activate.sh && python projet.py'
.PHONY: start
start: $(DATA) | venv check-python-works
@sh -c '. ./activate.sh && python projet.py'
reset:
@echo Deleting generated states and models
@rm -rf out/* models/* | true
debug:
.PHONY: debug
debug: $(DATA) | venv check-python-works check-pudb-works
@bash -c 'source activate.sh && pudb projet.py'
profile:
@bash -c 'source activate.sh && python -m cProfile -o prof.out projet.py && gprof2dot -f pstats prof.out | dot -Tpng -o output.png'
.PHONY: profile
profile: $(DATA) | venv check-python-works check-gprof2dot-works check-dot-works
@bash -c 'source activate.sh && python -m cProfile -o prof.out projet.py && gprof2dot -f pstats prof.out | dot -T png -o output.png'
mrproper: reset
@rm -r __pycache__ venv
.PHONY: log
log: $(DATA) reset | venv
@sed -i 's/GPU_BOOSTED: Final = False/GPU_BOOSTED: Final = True/;s/COMPILE_WITH_C: Final = False/COMPILE_WITH_C: Final = True/' config.py
@echo 'Logging GPU'
@make -s start > log_gpu
@sed -i 's/GPU_BOOSTED: Final = True/GPU_BOOSTED: Final = False/' config.py
@echo 'Logging CPU'
@make -s start > log_cpu
@sed -i 's/GPU_BOOSTED: Final = False/GPU_BOOSTED: Final = True/;s/COMPILE_WITH_C: Final = True/COMPILE_WITH_C: Final = False/' config.py
@echo 'Logging PGPU'
@make -s start > log_pgpu
@sed -i 's/GPU_BOOSTED: Final = True/GPU_BOOSTED: Final = False/' config.py
@echo 'Logging PY'
@make -s start > log_py
@echo 'Cleaning up'
@make -s reset
test:
@bash -c 'source activate.sh && ls out | sed s/.pkl// | xargs -n1 python test_diff.py out'
@bash -c 'source activate.sh && ls models | sed s/.pkl// | xargs -n1 python test_diff.py models'
.PHONY: reset
reset:
@echo 'Deleting generated states and models'
@rm -frv $(OUT_DIR)/* $(MODELS_DIR)/*
#@ln -sv /mnt/pierre_stuffs/ViolaJones/python/models .
#@ln -sv /mnt/pierre_stuffs/ViolaJones/python/out .
.PHONY: clean
clean:
@rm -fv log_gpu log_cpu log_gpu log_py
.PHONY: mrproper
mrproper: clean
@rm -rfv __pycache__ venv
.PHONY: help
help:
@echo "all start reset mrproper help"
@echo "Available targets:"
@echo "\tall: alias for start, (default target)"
@echo "\tvenv: Create python virtual environnement."
@echo "\tstart: Start the ViolaJones algorithm, require data beforehand downloaded by the downloader."
@echo "\tdebug: Debug the ViolaJones algorithm, require data beforehand downloaded by the downloader."
@echo "\tprofile: Profile the ViolaJones algorithm functions timestamps, require data beforehand downloaded by the downloader."
@echo "\treset: Will delete any saved models and processed data made by ViolaJones."
@echo "\tmrproper: Will remove cpp binary files. Will execute reset target beforehand."
.PHONY: check-python-works
check-python-works:
@python --version >/dev/null 2>&1 || (echo 'Please install Python.' && exit 1)
.PHONY: check-pudb-works
check-pudb-works:
@pudb --version >/dev/null 2>&1 || (echo 'Please install pudb.' && exit 1)
.PHONY: check-gprof2dot-works
check-gprof2dot-works:
@gprof2dot --help >/dev/null 2>&1 || (echo 'Please install gprof2dot.' && exit 1)
.PHONY: check-dot-works
check-dot-works:
@dot --version >/dev/null 2>&1 || (echo 'Please install dot from graphviz.' && exit 1)

View File

@ -18,13 +18,13 @@ else:
@njit('uint8[:, :, :, :](uint16, uint16)')
def build_features(width: int, height: int) -> np.ndarray:
"""Initialize the features base on the input shape.
"""Initialize the features based on the input shape.
Args:
shape (Tuple[int, int]): Shape of the image (Width, Height).
shape (Tuple[int, int]): Shape of the image (Width, Height)
Returns:
np.ndarray: The initialized features.
np.ndarray: The initialized features
"""
feats = []
empty = (0, 0, 0, 0)
@ -63,10 +63,10 @@ def init_weights(y_train: np.ndarray) -> np.ndarray:
"""Initialize the weights of the weak classifiers based on the training labels.
Args:
y_train (np.ndarray): Training labels.
y_train (np.ndarray): Training labels
Returns:
np.ndarray: The initialized weights.
np.ndarray: The initialized weights
"""
weights = np.empty_like(y_train, dtype = np.float64)
t = y_train.sum()
@ -79,26 +79,48 @@ def classify_weak_clf(x_feat_i: np.ndarray, threshold: int, polarity: int) -> np
"""Classify the integrated features based on polarity and threshold.
Args:
x_feat_i (np.ndarray): Integrated features.
threshold (int): Trained threshold.
polarity (int): Trained polarity.
x_feat_i (np.ndarray): Integrated features
threshold (int): Trained threshold
polarity (int): Trained polarity
Returns:
np.ndarray: Classified features.
np.ndarray: Classified features
"""
res = np.zeros_like(x_feat_i, dtype = np.int8)
res[polarity * x_feat_i < polarity * threshold] = 1
return res
@njit('Tuple((int32, float64, float64[:]))(int32[:, :], float64[:], int32[:, :], uint8[:])')
def select_best(classifiers: np.ndarray, weights: np.ndarray, X_feat: np.ndarray, y: np.ndarray) -> Tuple[int, float, np.ndarray]:
"""Select the best classifier given theirs predictions.
@njit('uint8[:](float64[:], int32[:, :], int32[:, :])')
def classify_viola_jones(alphas: np.ndarray, classifiers: np.ndarray, X_feat: np.ndarray) -> np.ndarray:
"""Classify the trained classifiers on the given features.
Args:
classifiers (np.ndarray): The weak classifiers.
weights (np.ndarray): Trained weights of each classifiers.
X_feat (np.ndarray): Integrated features.
y (np.ndarray): Features labels.
alphas (np.ndarray): Trained alphas
classifiers (np.ndarray): Trained classifiers
X_feat (np.ndarray): Integrated features
Returns:
np.ndarray: Classification results
"""
total = np.zeros(X_feat.shape[1], dtype = np.float64)
for i, alpha in enumerate(tqdm_iter(alphas, "Classifying ViolaJones")):
(j, threshold, polarity) = classifiers[i]
total += alpha * classify_weak_clf(X_feat[j], threshold, polarity)
y_pred = np.zeros(X_feat.shape[1], dtype = np.uint8)
y_pred[total >= 0.5 * np.sum(alphas)] = 1
return y_pred
@njit('Tuple((int32, float64, float64[:]))(int32[:, :], float64[:], int32[:, :], uint8[:])')
def select_best(classifiers: np.ndarray, weights: np.ndarray, X_feat: np.ndarray, y: np.ndarray) -> Tuple[int, float, np.ndarray]:
"""Select the best classifier given their predictions.
Args:
classifiers (np.ndarray): The weak classifiers
weights (np.ndarray): Trained weights of each classifiers
X_feat (np.ndarray): Integrated features
y (np.ndarray): Features labels
Returns:
Tuple[int, float, np.ndarray]: Index of the best classifier, the best error and the best accuracy
@ -116,13 +138,13 @@ def train_viola_jones(T: int, X_feat: np.ndarray, X_feat_argsort: np.ndarray, y:
"""Train the weak classifiers.
Args:
T (int): Number of weak classifiers.
X_feat (np.ndarray): Integrated features.
X_feat_argsort (np.ndarray): Sorted indexes of the integrated features.
y (np.ndarray): Features labels.
T (int): Number of weak classifiers
X_feat (np.ndarray): Integrated features
X_feat_argsort (np.ndarray): Sorted indexes of the integrated features
y (np.ndarray): Features labels
Returns:
Tuple[np.ndarray, np.ndarray]: List of trained alphas and the list of the final classifiers.
Tuple[np.ndarray, np.ndarray]: List of trained alphas and the list of the final classifiers
"""
weights = init_weights(y)
alphas, final_classifier = np.empty(T, dtype = np.float64), np.empty((T, 3), dtype = np.int32)
@ -139,44 +161,22 @@ def train_viola_jones(T: int, X_feat: np.ndarray, X_feat_argsort: np.ndarray, y:
return alphas, final_classifier
@njit('uint8[:](float64[:], int32[:, :], int32[:, :])')
def classify_viola_jones(alphas: np.ndarray, classifiers: np.ndarray, X_feat: np.ndarray) -> np.ndarray:
"""Classify the trained classifiers on the given features.
Args:
alphas (np.ndarray): Trained alphas.
classifiers (np.ndarray): Trained classifiers.
X_feat (np.ndarray): Integrated features.
Returns:
np.ndarray: Classification results.
"""
total = np.zeros(X_feat.shape[1], dtype = np.float64)
for i, alpha in enumerate(tqdm_iter(alphas, "Classifying ViolaJones")):
(j, threshold, polarity) = classifiers[i]
total += alpha * classify_weak_clf(X_feat[j], threshold, polarity)
y_pred = np.zeros(X_feat.shape[1], dtype = np.uint8)
y_pred[total >= 0.5 * np.sum(alphas)] = 1
return y_pred
@njit
def get_best_anova_features(X: np.ndarray, y: np.ndarray) -> np.ndarray:
#SelectPercentile(f_classif, percentile = 10).fit(X, y).get_support(indices = True)
classes = [X.T[y == 0].astype(np.float64), X.T[y == 1].astype(np.float64)]
n_samples_per_class = np.asarray([classes[0].shape[0], classes[1].shape[0]])
n_samples = classes[0].shape[0] + classes[1].shape[0]
ss_alldata = (classes[0] ** 2).sum(axis = 0) + (classes[1] ** 2).sum(axis = 0)
sums_classes = [np.asarray(classes[0].sum(axis = 0)), np.asarray(classes[1].sum(axis = 0))]
sq_of_sums_alldata = (sums_classes[0] + sums_classes[1]) ** 2
sq_of_sums_args = [sums_classes[0] ** 2, sums_classes[1] ** 2]
ss_tot = ss_alldata - sq_of_sums_alldata / n_samples
sqd_sum_bw_n = sq_of_sums_args[0] / n_samples_per_class[0] + \
sq_of_sums_args[1] / n_samples_per_class[1] - sq_of_sums_alldata / n_samples
ss_wn = ss_tot - sqd_sum_bw_n
df_wn = n_samples - 2
msw = ss_wn / df_wn
f_values = sqd_sum_bw_n / msw
return np.sort(np.argsort(f_values)[::-1][: int(np.ceil(X.shape[0] / 10.0))])
#@njit
#def get_best_anova_features(X: np.ndarray, y: np.ndarray) -> np.ndarray:
# #SelectPercentile(f_classif, percentile = 10).fit(X, y).get_support(indices = True)
# classes = [X.T[y == 0].astype(np.float64), X.T[y == 1].astype(np.float64)]
# n_samples_per_class = np.asarray([classes[0].shape[0], classes[1].shape[0]])
# n_samples = classes[0].shape[0] + classes[1].shape[0]
# ss_all_data = (classes[0] ** 2).sum(axis = 0) + (classes[1] ** 2).sum(axis = 0)
# sums_classes = [np.asarray(classes[0].sum(axis = 0)), np.asarray(classes[1].sum(axis = 0))]
# sq_of_sums_all_data = (sums_classes[0] + sums_classes[1]) ** 2
# sq_of_sums_args = [sums_classes[0] ** 2, sums_classes[1] ** 2]
# ss_tot = ss_all_data - sq_of_sums_all_data / n_samples
#
# sqd_sum_bw_n = sq_of_sums_args[0] / n_samples_per_class[0] + \
# sq_of_sums_args[1] / n_samples_per_class[1] - sq_of_sums_all_data / n_samples
# ss_wn = ss_tot - sqd_sum_bw_n
# df_wn = n_samples - 2
# msw = ss_wn / df_wn
# f_values = sqd_sum_bw_n / msw
# return np.sort(np.argsort(f_values)[::-1][: int(np.ceil(X.shape[0] / 10.0))])

View File

@ -18,10 +18,10 @@ def set_integral_image(X: np.ndarray) -> np.ndarray:
"""Transform the input images in integrated images (CPU version).
Args:
X (np.ndarray): Dataset of images.
X (np.ndarray): Dataset of images
Returns:
np.ndarray: Dataset of integrated images.
np.ndarray: Dataset of integrated images
"""
X_ii = np.empty_like(X, dtype = np.uint32)
for i, Xi in enumerate(tqdm_iter(X, "Applying integral image")):
@ -34,59 +34,18 @@ def set_integral_image(X: np.ndarray) -> np.ndarray:
X_ii[i] = ii
return X_ii
@njit('uint32(uint32[:, :], int16, int16, int16, int16)')
def __compute_feature__(ii: np.ndarray, x: int, y: int, w: int, h: int) -> int:
"""Compute a feature on an integrated image at a specific coordinate (CPU version).
Args:
ii (np.ndarray): Integrated image.
x (int): X coordinate.
y (int): Y coordinate.
w (int): width of the feature.
h (int): height of the feature.
Returns:
int: Computed feature.
"""
return ii[y + h, x + w] + ii[y, x] - ii[y + h, x] - ii[y, x + w]
@njit('int32[:, :](uint8[:, :, :, :], uint32[:, :, :])')
def apply_features(feats: np.ndarray, X_ii: np.ndarray) -> np.ndarray:
"""Apply the features on a integrated image dataset (CPU version).
Args:
feats (np.ndarray): Features to apply.
X_ii (np.ndarray): Integrated image dataset.
Returns:
np.ndarray: Applied features.
"""
X_feat = np.empty((feats.shape[0], X_ii.shape[0]), dtype = np.int32)
for i, (p, n) in enumerate(tqdm_iter(feats, "Applying features")):
for j, x_i in enumerate(X_ii):
p_x, p_y, p_w, p_h = p[0]
p1_x, p1_y, p1_w, p1_h = p[1]
n_x, n_y, n_w, n_h = n[0]
n1_x, n1_y, n1_w, n1_h = n[1]
p1 = __compute_feature__(x_i, p_x, p_y, p_w, p_h) + __compute_feature__(x_i, p1_x, p1_y, p1_w, p1_h)
n1 = __compute_feature__(x_i, n_x, n_y, n_w, n_h) + __compute_feature__(x_i, n1_x, n1_y, n1_w, n1_h)
X_feat[i, j] = int32(p1) - int32(n1)
return X_feat
@njit('int32[:, :](int32[:, :], uint16[:, :], uint8[:], float64[:])')
def train_weak_clf(X_feat: np.ndarray, X_feat_argsort: np.ndarray, y: np.ndarray, weights: np.ndarray) -> np.ndarray:
"""Train the weak classifiers on a given dataset (CPU version).
Args:
X_feat (np.ndarray): Feature images dataset.
X_feat_argsort (np.ndarray): Sorted indexes of the integrated features.
y (np.ndarray): Labels of the features.
weights (np.ndarray): Weights of the features.
X_feat (np.ndarray): Feature images dataset
X_feat_argsort (np.ndarray): Sorted indexes of the integrated features
y (np.ndarray): Labels of the features
weights (np.ndarray): Weights of the features
Returns:
np.ndarray: Trained weak classifiers.
np.ndarray: Trained weak classifiers
"""
total_pos, total_neg = weights[y == 1].sum(), weights[y == 0].sum()
@ -112,29 +71,85 @@ def train_weak_clf(X_feat: np.ndarray, X_feat_argsort: np.ndarray, y: np.ndarray
classifiers[i] = (best_threshold, best_polarity)
return classifiers
@njit('uint32(uint32[:, :], int16, int16, int16, int16)')
def __compute_feature__(ii: np.ndarray, x: int, y: int, w: int, h: int) -> int:
"""Compute a feature on an integrated image at a specific coordinate (CPU version).
Args:
ii (np.ndarray): Integrated image
x (int): X coordinate
y (int): Y coordinate
w (int): width of the feature
h (int): height of the feature
Returns:
int: Computed feature
"""
return ii[y + h, x + w] + ii[y, x] - ii[y + h, x] - ii[y, x + w]
@njit('int32[:, :](uint8[:, :, :, :], uint32[:, :, :])')
def apply_features(feats: np.ndarray, X_ii: np.ndarray) -> np.ndarray:
"""Apply the features on a integrated image dataset (CPU version).
Args:
feats (np.ndarray): Features to apply
X_ii (np.ndarray): Integrated image dataset
Returns:
np.ndarray: Applied features
"""
X_feat = np.empty((feats.shape[0], X_ii.shape[0]), dtype = np.int32)
for i, (p, n) in enumerate(tqdm_iter(feats, "Applying features")):
for j, x_i in enumerate(X_ii):
p_x, p_y, p_w, p_h = p[0]
p1_x, p1_y, p1_w, p1_h = p[1]
n_x, n_y, n_w, n_h = n[0]
n1_x, n1_y, n1_w, n1_h = n[1]
p1 = __compute_feature__(x_i, p_x, p_y, p_w, p_h) + __compute_feature__(x_i, p1_x, p1_y, p1_w, p1_h)
n1 = __compute_feature__(x_i, n_x, n_y, n_w, n_h) + __compute_feature__(x_i, n1_x, n1_y, n1_w, n1_h)
X_feat[i, j] = int32(p1) - int32(n1)
return X_feat
@njit('int32(int32[:], uint16[:], int32, int32)')
def as_partition(a: np.ndarray, indices: np.ndarray, l: int, h: int) -> int:
i = l - 1
j = l
for j in range(l, h + 1):
if a[indices[j]] < a[indices[h]]:
def _as_partition_(d_a: np.ndarray, d_indices: np.ndarray, low: int, high: int) -> int:
"""Partition of the argsort algorithm.
Args:
d_a (np.ndarray): Array on device to sort
d_indices (np.ndarray): Array of indices on device to write to
low (int): lower bound to sort
high (int): higher bound to sort
Returns:
int: Last index sorted
"""
i, j = low - 1, low
for j in range(low, high + 1):
if d_a[d_indices[j]] < d_a[d_indices[high]]:
i += 1
indices[i], indices[j] = indices[j], indices[i]
d_indices[i], d_indices[j] = d_indices[j], d_indices[i]
i += 1
indices[i], indices[j] = indices[j], indices[i]
d_indices[i], d_indices[j] = d_indices[j], d_indices[i]
return i
@njit('void(int32[:], uint16[:], int32, int32)')
def argsort_bounded(a: np.ndarray, indices: np.ndarray, l: int, h: int):
total = h - l + 1;
stack = np.empty((total,), dtype = np.int32)
stack[0] = l
stack[1] = h
top = 1;
def argsort_bounded(d_a: np.ndarray, d_indices: np.ndarray, low: int, high: int) -> None:
"""Perform an indirect sort of a given array within a given bound.
low = l
high = h
Args:
d_a (np.ndarray): Array to sort
d_indices (np.ndarray): Array of indices to write to
low (int): lower bound to sort
high (int): higher bound to sort
"""
total = high - low + 1
stack = np.empty((total,), dtype = np.int32)
stack[0] = low
stack[1] = high
top = 1
while top >= 0:
high = stack[top]
@ -143,24 +158,32 @@ def argsort_bounded(a: np.ndarray, indices: np.ndarray, l: int, h: int):
top -= 1
if low >= high:
break;
break
p = as_partition(a, indices, low, high);
p = _as_partition_(d_a, d_indices, low, high)
if p - 1 > low:
top += 1
stack[top] = low;
stack[top] = low
top += 1
stack[top] = p - 1;
stack[top] = p - 1
if p + 1 < high:
top += 1
stack[top] = p + 1;
stack[top] = p + 1
top += 1
stack[top] = high;
stack[top] = high
@njit('uint16[:, :](int32[:, :])')
def argsort(X_feat: np.ndarray) -> np.ndarray:
def argsort_2d(X_feat: np.ndarray) -> np.ndarray:
"""Perform an indirect sort of a given array.
Args:
X_feat (np.ndarray): Array to sort
Returns:
np.ndarray: Array of indices that sort the array
"""
indices = np.empty_like(X_feat, dtype = np.uint16)
indices[:, :] = np.arange(indices.shape[1])
for i in tqdm_iter(range(X_feat.shape[0]), "argsort"):

View File

@ -12,10 +12,10 @@ def __scanCPU_3d__(X: np.ndarray) -> np.ndarray:
"""Prefix Sum (scan) of a given dataset.
Args:
X (np.ndarray): Dataset of images to apply sum.
X (np.ndarray): Dataset of images to apply sum
Returns:
np.ndarray: Scanned dataset of images.
np.ndarray: Scanned dataset of images
"""
for x in range(X.shape[0]):
for y in range(X.shape[1]):
@ -30,10 +30,10 @@ def __kernel_scan_3d__(n: int, j: int, d_inter: np.ndarray, d_a: np.ndarray) ->
"""GPU kernel used to do a parallel prefix sum (scan).
Args:
n (int):
j (int): [description]
d_inter (np.ndarray): [description]
d_a (np.ndarray): [description]
n (int): Number of width blocks
j (int): Temporary sum index
d_inter (np.ndarray): Temporary sums on device to add
d_a (np.ndarray): Dataset of images on device to apply sum
"""
x_coor, y_coor = cuda.grid(2)
@ -76,10 +76,10 @@ def __add_3d__(d_X: np.ndarray, d_s: np.ndarray, n: int, m: int) -> None:
"""GPU kernel for parallel sum.
Args:
d_X (np.ndarray): Dataset of images.
d_s (np.ndarray): Temporary sums to add.
n (int): Number of width blocks.
m (int): Height of a block.
d_X (np.ndarray): Dataset of images on device
d_s (np.ndarray): Temporary sums on device to add
n (int): Number of width blocks
m (int): Height of a block
"""
x_coor, y_coor = cuda.grid(2)
if x_coor < n and y_coor < m:
@ -91,10 +91,10 @@ def __scanGPU_3d__(X: np.ndarray) -> np.ndarray:
Read more: https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
Args:
X (np.ndarray): Dataset of images.
X (np.ndarray): Dataset of images
Returns:
np.ndarray: Scanned dataset of images.
np.ndarray: Scanned dataset of images
"""
k, height, n = X.shape
n_block_x, n_block_y = np.ceil(np.divide(X.shape[1:], NB_THREADS_2D)).astype(np.uint64)
@ -131,10 +131,10 @@ def __transpose_kernel__(d_X: np.ndarray, d_Xt: np.ndarray) -> None:
"""GPU kernel of the function __transpose_3d__.
Args:
d_X (np.ndarray): Dataset of images.
d_Xt(np.ndarray): Transposed dataset of images.
width (int): Width of each images in the dataset.
height (int): Height of each images in the dataset.
d_X (np.ndarray): Dataset of images on device
d_Xt(np.ndarray): Transposed dataset of images
width (int): Width of each images in the dataset
height (int): Height of each images in the dataset
"""
temp = cuda.shared.array(NB_THREADS_2D, dtype = uint32)
@ -152,10 +152,10 @@ def __transpose_3d__(X: np.ndarray) -> np.ndarray:
"""Transpose every images in the given dataset.
Args:
X (np.ndarray): Dataset of images.
X (np.ndarray): Dataset of images
Returns:
np.ndarray: Transposed dataset of images.
np.ndarray: Transposed dataset of images
"""
n_block_x, n_block_z = np.ceil(np.divide(X.shape[1:], NB_THREADS_2D)).astype(np.uint64)
d_X = cuda.to_device(X)
@ -167,10 +167,10 @@ def set_integral_image(X: np.ndarray) -> np.ndarray:
"""Transform the input images in integrated images (GPU version).
Args:
X (np.ndarray): Dataset of images.
X (np.ndarray): Dataset of images
Returns:
np.ndarray: Dataset of integrated images.
np.ndarray: Dataset of integrated images
"""
X = X.astype(np.uint32)
X = __scanGPU_3d__(X)
@ -184,13 +184,13 @@ def __train_weak_clf_kernel__(d_classifiers: np.ndarray, d_y: np.ndarray, d_X_fe
"""GPU kernel of the function train_weak_clf.
Args:
d_classifiers (np.ndarray): Weak classifiers to train.
d_y (np.ndarray): Labels of the features.
d_X_feat (np.ndarray): Feature images dataset.
d_X_feat_argsort (np.ndarray): Sorted indexes of the integrated features.
d_weights (np.ndarray): Weights of the features.
total_pos (float): Total of positive labels in the dataset.
total_neg (float): Total of negative labels in the dataset.
d_classifiers (np.ndarray): Weak classifiers on device to train
d_y (np.ndarray): Labels of the features on device
d_X_feat (np.ndarray): Feature images dataset on device
d_X_feat_argsort (np.ndarray): Sorted indexes of the integrated features on device
d_weights (np.ndarray): Weights of the features on device
total_pos (float): Total of positive labels in the dataset
total_neg (float): Total of negative labels in the dataset
"""
i = cuda.blockIdx.x * cuda.blockDim.x * cuda.blockDim.y * cuda.blockDim.z
i += cuda.threadIdx.x * cuda.blockDim.y * cuda.blockDim.z
@ -224,13 +224,13 @@ def train_weak_clf(X_feat: np.ndarray, X_feat_argsort: np.ndarray, y: np.ndarray
"""Train the weak classifiers on a given dataset (GPU version).
Args:
X_feat (np.ndarray): Feature images dataset.
X_feat_argsort (np.ndarray): Sorted indexes of the integrated features.
y (np.ndarray): Labels of the features.
weights (np.ndarray): Weights of the features.
X_feat (np.ndarray): Feature images dataset
X_feat_argsort (np.ndarray): Sorted indexes of the integrated features
y (np.ndarray): Labels of the features
weights (np.ndarray): Weights of the features
Returns:
np.ndarray: Trained weak classifiers.
np.ndarray: Trained weak classifiers
"""
total_pos, total_neg = weights[y == 1].sum(), weights[y == 0].sum()
d_classifiers = cuda.to_device(np.empty((X_feat.shape[0], 2), dtype = np.int32))
@ -247,52 +247,52 @@ def __compute_feature__(ii: np.ndarray, x: int, y: int, w: int, h: int) -> int:
"""Compute a feature on an integrated image at a specific coordinate (GPU version).
Args:
ii (np.ndarray): Integrated image.
x (int): X coordinate.
y (int): Y coordinate.
w (int): width of the feature.
h (int): height of the feature.
ii (np.ndarray): Integrated image
x (int): X coordinate
y (int): Y coordinate
w (int): width of the feature
h (int): height of the feature
Returns:
int: Computed feature.
int: Computed feature
"""
return ii[y + h, x + w] + ii[y, x] - ii[y + h, x] - ii[y, x + w]
@cuda.jit('void(int32[:, :], uint8[:, :, :, :], uint32[:, :, :])')
def __apply_feature_kernel__(X_feat: np.ndarray, feats: np.ndarray, X_ii: np.ndarray) -> None:
def __apply_feature_kernel__(d_X_feat: np.ndarray, d_feats: np.ndarray, d_X_ii: np.ndarray) -> None:
"""GPU kernel of the function apply_features.
Args:
X_feat (np.ndarray): Feature images dataset.
feats (np.ndarray): Features to apply.
X_ii (np.ndarray): Integrated image dataset.
n (int): Number of features.
m (int): Number of images of the dataset.
d_X_feat (np.ndarray): Feature images dataset on device
d_feats (np.ndarray): Features on device to apply
d_X_ii (np.ndarray): Integrated image dataset on device
n (int): Number of features
m (int): Number of images of the dataset
"""
x, y = cuda.grid(2)
if x >= feats.shape[0] or y >= X_ii.shape[0]:
if x >= d_feats.shape[0] or y >= d_X_ii.shape[0]:
return
p_x, p_y, p_w, p_h = feats[x, 0, 0]
p1_x, p1_y, p1_w, p1_h = feats[x, 0, 1]
n_x, n_y, n_w, n_h = feats[x, 1, 0]
n1_x, n1_y, n1_w, n1_h = feats[x, 1, 1]
sP = __compute_feature__(X_ii[y], p_x, p_y, p_w, p_h) + \
__compute_feature__(X_ii[y], p1_x, p1_y, p1_w, p1_h)
sN = __compute_feature__(X_ii[y], n_x, n_y, n_w, n_h) + \
__compute_feature__(X_ii[y], n1_x, n1_y, n1_w, n1_h)
X_feat[x, y] = sP - sN
p_x, p_y, p_w, p_h = d_feats[x, 0, 0]
p1_x, p1_y, p1_w, p1_h = d_feats[x, 0, 1]
n_x, n_y, n_w, n_h = d_feats[x, 1, 0]
n1_x, n1_y, n1_w, n1_h = d_feats[x, 1, 1]
sP = __compute_feature__(d_X_ii[y], p_x, p_y, p_w, p_h) + \
__compute_feature__(d_X_ii[y], p1_x, p1_y, p1_w, p1_h)
sN = __compute_feature__(d_X_ii[y], n_x, n_y, n_w, n_h) + \
__compute_feature__(d_X_ii[y], n1_x, n1_y, n1_w, n1_h)
d_X_feat[x, y] = sP - sN
#@njit('int32[:, :](uint8[:, :, :, :], uint32[:, :, :])')
def apply_features(feats: np.ndarray, X_ii: np.ndarray) -> np.ndarray:
"""Apply the features on a integrated image dataset (GPU version).
Args:
feats (np.ndarray): Features to apply.
X_ii (np.ndarray): Integrated image dataset.
feats (np.ndarray): Features to apply
X_ii (np.ndarray): Integrated image dataset
Returns:
np.ndarray: Applied features.
np.ndarray: Applied features
"""
d_X_feat = cuda.to_device(np.empty((feats.shape[0], X_ii.shape[0]), dtype = np.int32))
d_feats = cuda.to_device(feats)
@ -303,28 +303,44 @@ def apply_features(feats: np.ndarray, X_ii: np.ndarray) -> np.ndarray:
return d_X_feat.copy_to_host()
@cuda.jit('int32(int32[:], uint16[:], int32, int32)', device = True)
def as_partition(a: np.ndarray, indices: np.ndarray, l: int, h: int) -> int:
i = l - 1
j = l
for j in range(l, h + 1):
if a[indices[j]] < a[indices[h]]:
def _as_partition_(d_a: np.ndarray, d_indices: np.ndarray, low: int, high: int) -> int:
"""Partition of the argsort algorithm.
Args:
d_a (np.ndarray): Array on device to sort
d_indices (np.ndarray): Array of indices on device to write to
low (int): lower bound to sort
high (int): higher bound to sort
Returns:
int: Last index sorted
"""
i = low - 1
j = low
for j in range(low, high + 1):
if d_a[d_indices[j]] < d_a[d_indices[high]]:
i += 1
indices[i], indices[j] = indices[j], indices[i]
d_indices[i], d_indices[j] = d_indices[j], d_indices[i]
i += 1
indices[i], indices[j] = indices[j], indices[i]
d_indices[i], d_indices[j] = d_indices[j], d_indices[i]
return i
@cuda.jit('void(int32[:], uint16[:], int32, int32)', device = True)
def argsort_bounded(a: np.ndarray, indices: np.ndarray, l: int, h: int) -> None:
#total = h - l + 1;
stack = cuda.local.array(6977, int32)
stack[0] = l
stack[1] = h
top = 1;
def argsort_bounded(d_a: np.ndarray, d_indices: np.ndarray, low: int, high: int) -> None:
"""Perform an indirect sort of a given array within a given bound.
low = l
high = h
Args:
d_a (np.ndarray): Array on device to sort
d_indices (np.ndarray): Array of indices on device to write to
low (int): lower bound to sort
high (int): higher bound to sort
"""
#total = high - low + 1;
stack = cuda.local.array(6977, int32)
stack[0] = low
stack[1] = high
top = 1
while top >= 0:
high = stack[top]
@ -333,35 +349,50 @@ def argsort_bounded(a: np.ndarray, indices: np.ndarray, l: int, h: int) -> None:
top -= 1
if low >= high:
break;
break
p = as_partition(a, indices, low, high);
p = _as_partition_(d_a, d_indices, low, high)
if p - 1 > low:
top += 1
stack[top] = low;
stack[top] = low
top += 1
stack[top] = p - 1;
stack[top] = p - 1
if p + 1 < high:
top += 1
stack[top] = p + 1;
stack[top] = p + 1
top += 1
stack[top] = high;
stack[top] = high
@cuda.jit('void(int32[:, :], uint16[:, :])')
def argsort_flatter(X_feat: np.ndarray, indices: np.ndarray) -> None:
i = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x
if i < X_feat.shape[0]:
for j in range(indices.shape[1]):
indices[i, j] = j
argsort_bounded(X_feat[i], indices[i], 0, X_feat.shape[1] - 1)
def argsort_flatter(d_a: np.ndarray, d_indices: np.ndarray) -> None:
# TODO Finish doxygen
"""Cuda kernel where argsort is applied to every column of a given 2D array.
def argsort(X_feat: np.ndarray) -> np.ndarray:
indices = np.empty_like(X_feat, dtype = np.uint16)
n_blocks = int(np.ceil(np.divide(X_feat.shape[0], NB_THREADS)))
d_X_feat = cuda.to_device(X_feat)
Args:
d_a (np.ndarray): 2D Array on device to sort
d_indices (np.ndarray): 2D Array of indices on device to write to
"""
i = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x
if i < d_a.shape[0]:
for j in range(d_indices.shape[1]):
d_indices[i, j] = j
argsort_bounded(d_a[i], d_indices[i], 0, d_a.shape[1] - 1)
def argsort_2d(a: np.ndarray) -> np.ndarray:
"""Perform an indirect sort on each column of a given 2D array
Args:
a (np.ndarray): 2D Array to sort
Returns:
np.ndarray: 2D Array of indices that sort the array
"""
indices = np.empty_like(a, dtype = np.uint16)
n_blocks = int(np.ceil(np.divide(a.shape[0], NB_THREADS)))
d_a = cuda.to_device(a)
d_indices = cuda.to_device(indices)
argsort_flatter[n_blocks, NB_THREADS](d_X_feat, d_indices)
argsort_flatter[n_blocks, NB_THREADS](d_a, d_indices)
cuda.synchronize()
return d_indices.copy_to_host()

View File

@ -3,9 +3,8 @@
# Exit if any of the command doesn't exit with code 0
set -e
EXEC_DIR=$1
test -z "$EXEC_DIR" && EXEC_DIR=..
VENV_PATH=$EXEC_DIR/python/venv
test -z "$EXEC_DIR" && EXEC_DIR=.
test -z "$VENV_PATH" && VENV_PATH="$EXEC_DIR/venv"
activate(){
if [ ! -d "$VENV_PATH" ]; then
@ -16,9 +15,9 @@ activate(){
echo 'Updating base pip packages'
python -m pip install -U setuptools pip
echo 'Installing requirements'
pip install -r "$EXEC_DIR"/python/requirements.txt
elif [ -f "$VENV_PATH"/Scripts/activate ]; then source "$VENV_PATH"/Scripts/activate
elif [ -f "$VENV_PATH"/bin/activate ]; then source "$VENV_PATH"/bin/activate
pip install -r requirements.txt
elif [ -f "$VENV_PATH"/Scripts/activate ]; then . "$VENV_PATH"/Scripts/activate
elif [ -f "$VENV_PATH"/bin/activate ]; then . "$VENV_PATH"/bin/activate
else
echo 'Python virtual environnement not detected'
exit 1

View File

@ -1,29 +1,29 @@
from toolbox import picke_multi_loader, format_time_ns, unit_test_argsort_2d
from toolbox import pickle_multi_loader, format_time_ns, unit_test_argsort_2d, header, footer, formatted_line, formatted_row
from typing import List, Tuple
from time import perf_counter_ns
from sys import stderr
import numpy as np
from config import OUT_DIR, DATA_DIR, __DEBUG
def unit_test(TS: List[int], labels: List[str] = ["CPU", "GPU", "PY", "PGPU"], tol: float = 1e-8) -> None:
def unit_test(TS: List[int], labels: List[str] = ['CPU', 'GPU', 'PY', 'PGPU'], tol: float = 1e-8) -> None:
"""Test if the each result is equals to other devices.
Given ViolaJones is a deterministic algorithm, the results no matter the device should be the same
Given ViolaJones is a fully deterministic algorithm. The results, regardless the device, should be the same
(given the floating point fluctuations), this function check this assertion.
Args:
TS (List[int]): Number of trained weak classifiers.
labels (List[str], optional): List of the trained device names. Defaults to ["CPU", "GPU", "PY", "PGPU"] (see config.py for more info).
tol (float, optional): Float difference tolerance. Defaults to 1e-8.
TS (List[int]): Number of trained weak classifiers
labels (List[str], optional): List of the trained device names. Defaults to ['CPU', 'GPU', 'PY', 'PGPU'] (see config.py for more info)
tol (float, optional): Float difference tolerance. Defaults to 1e-8
"""
if len(labels) < 2:
return print("Not enough devices to test")
return print('Not enough devices to test')
print(f"\n| {'Unit testing':<37} | {'Test state':<10} | {'Time spent (ns)':<18} | {'Formatted time spent':<29} |")
print(f"|{'-'*39}|{'-'*12}|{'-'*20}|{'-'*31}|")
unit_gaps = [37, -10, -18, 29]
header(unit_gaps, ['Unit testing', 'Test state', 'Time spent (ns)', 'Formatted time spent'])
fnc_s = perf_counter_ns()
n_total = 0
n_success = 0
unit_timestamp = perf_counter_ns()
n_total, n_success = 0, 0
def test_fnc(title, fnc):
nonlocal n_total, n_success
@ -32,96 +32,104 @@ def unit_test(TS: List[int], labels: List[str] = ["CPU", "GPU", "PY", "PGPU"], t
state = fnc()
e = perf_counter_ns() - s
if state:
print(f"| {title:<37} | {'Passed':>10} | {e:>18,} | {format_time_ns(e):<29} |")
formatted_row(unit_gaps, [title, 'Passed', f'{e:,}', format_time_ns(e)])
n_success += 1
else:
print(f"| {title:<37} | {'Failed':>10} | {e:>18,} | {format_time_ns(e):<29} |")
formatted_row(unit_gaps, [title, 'Failed', f'{e:,}', format_time_ns(e)])
for set_name in ["train", "test"]:
for filename in ["ii", "feat"]:
title = f"X_{set_name}_{filename}"
print(f"{filename}...", end = "\r")
bs = picke_multi_loader([f"{title}_{label}" for label in labels], OUT_DIR)
for set_name in ['train', 'test']:
for filename in ['ii', 'feat']:
title = f'X_{set_name}_{filename}'
print(f'{filename}...', file = stderr, end = '\r')
bs = pickle_multi_loader([f'{title}_{label}' for label in labels], OUT_DIR)
for i, (b1, l1) in enumerate(zip(bs, labels)):
if b1 is None:
if __DEBUG:
print(f"| {title:<22} - {l1:<12} | {'Skipped':>10} | {'None':>18} | {'None':<29} |")
formatted_row(unit_gaps, [f'{title:<22} - {l1:<12}', 'Skipped', 'None', 'None'])
continue
for j, (b2, l2) in enumerate(zip(bs, labels)):
if i >= j:
continue
if b2 is None:
if __DEBUG:
print(f"| {title:<22} - {l1:<4} vs {l2:<4} | {'Skipped':>10} | {'None':>18} | {'None':<29} |")
formatted_row(unit_gaps, [f'{title:<22} - {l1:<4} vs {l2:<4}', 'Skipped', 'None', 'None'])
continue
test_fnc(f"{title:<22} - {l1:<4} vs {l2:<4}", lambda: np.abs(b1 - b2).mean() < tol)
test_fnc(f'{title:<22} - {l1:<4} vs {l2:<4}', lambda: np.abs(b1 - b2).mean() < tol)
title = f"X_{set_name}_feat_argsort"
print(f"Loading {title}...", end = "\r")
title = f'X_{set_name}_feat_argsort'
print(f'Loading {title}...', file = stderr, end = '\r')
feat = None
#indices = pickle_multi_loader(['indices'], OUT_DIR)[0]
bs = []
for label in labels:
if feat is None:
feat_tmp = picke_multi_loader([f"X_{set_name}_feat_{label}"], OUT_DIR)[0]
feat_tmp = pickle_multi_loader([f'X_{set_name}_feat_{label}'], OUT_DIR)[0]
if feat_tmp is not None:
#feat = feat_tmp[indices]
feat = feat_tmp
bs.append(picke_multi_loader([f"{title}_{label}"], OUT_DIR)[0])
bs.append(pickle_multi_loader([f'{title}_{label}'], OUT_DIR)[0])
for i, (b1, l1) in enumerate(zip(bs, labels)):
if b1 is None:
if __DEBUG:
print(f"| {title:<22} - {l1:<12} | {'Skipped':>10} | {'None':>18} | {'None':<29} |")
formatted_row(unit_gaps, [f'{title:<22} - {l1:<12}', 'Skipped', 'None', 'None'])
continue
if feat is not None:
test_fnc(f"{title:<22} - {l1:<4} argsort", lambda: unit_test_argsort_2d(feat, b1))
test_fnc(f'{title:<22} - {l1:<4} argsort', lambda: unit_test_argsort_2d(feat, b1))
for j, (b2, l2) in enumerate(zip(bs, labels)):
if i >= j:
continue
if b2 is None:
if __DEBUG:
print(f"| {title:<22} - {l1:<4} vs {l2:<4} | {'Skipped':>10} | {'None':>18} | {'None':<29} |")
formatted_row(unit_gaps, [f'{title:<22} - {l1:<4} vs {l2:<4}', 'Skipped', 'None', 'None'])
continue
test_fnc(f"{title:<22} - {l1:<4} vs {l2:<4}", lambda: np.abs(b1 - b2).mean() < tol)
test_fnc(f'{title:<22} - {l1:<4} vs {l2:<4}', lambda: np.abs(b1 - b2).mean() < tol)
for T in TS:
for filename in ["alphas", "final_classifiers"]:
print(f"{filename}_{T}...", end = "\r")
bs = picke_multi_loader([f"{filename}_{T}_{label}" for label in labels])
for filename in ['alphas', 'final_classifiers']:
print(f'{filename}_{T}...', file = stderr, end = '\r')
bs = pickle_multi_loader([f'{filename}_{T}_{label}' for label in labels])
for i, (b1, l1) in enumerate(zip(bs, labels)):
if b1 is None:
if __DEBUG:
print(f"| {filename + '_' + str(T):<22} - {l1:<12} | {'Skipped':>10} | {'None':>18} | {'None':<29} |")
formatted_row(unit_gaps, [f"{filename + '_' + str(T):<22} - {l1:<12}", 'Skipped', 'None', 'None'])
continue
for j, (b2, l2) in enumerate(zip(bs, labels)):
if i >= j:
continue
if b2 is None:
if __DEBUG:
print(f"| {filename + '_' + str(T):<22} - {l1:<4} vs {l2:<4} | {'Skipped':>10} | {'None':>18} | {'None':<29} |")
formatted_row(unit_gaps, [f"{filename + '_' + str(T):<22} - {l1:<4} vs {l2:<4}", 'Skipped', 'None', 'None'])
continue
test_fnc(f"{filename + '_' + str(T):<22} - {l1:<4} vs {l2:<4}", lambda: np.abs(b1 - b2).mean() < tol)
print(f"|{'-'*39}|{'-'*12}|{'-'*20}|{'-'*31}|")
e = perf_counter_ns() - fnc_s
print(f"| {'Unit testing summary':<37} | {str(n_success) + '/' + str(n_total):>10} | {e:>18,} | {format_time_ns(e):<29} |")
time_spent = perf_counter_ns() - unit_timestamp
if n_total == 0:
formatted_row(unit_gaps, ['Unit testing summary', 'No files', f'{time_spent:,}', format_time_ns(time_spent)])
else:
formatted_line(unit_gaps, '', '', '', '')
formatted_row(unit_gaps, ['Unit testing summary', f'{n_success}/{n_total}', f'{time_spent:,}', format_time_ns(time_spent)])
footer(unit_gaps)
def load_datasets(data_dir: str = DATA_DIR) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
"""Load the datasets.
Args:
data_dir (str, optional): [description]. Defaults to DATA_DIR (see config.py).
data_dir (str, optional): [description]. Defaults to DATA_DIR (see config.py)
Returns:
Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: [description]
Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: X_train, y_train, X_test, y_test
"""
bytes_to_int_list = lambda b: list(map(int, b.rstrip().split(" ")))
bytes_to_int_list = lambda b: list(map(int, b.rstrip().split(' ')))
def load(set_name: str) -> np.ndarray:
with open(f"{data_dir}/{set_name}.bin", "r") as f:
with open(f'{data_dir}/{set_name}.bin', 'r') as f:
shape = bytes_to_int_list(f.readline())
return np.asarray(bytes_to_int_list(f.readline()), dtype = np.uint8).reshape(shape)
return load("X_train"), load("y_train"), load("X_test"), load("y_test")
return load('X_train'), load('y_train'), load('X_test'), load('y_test')

View File

@ -5,6 +5,9 @@ from sys import argv
import numpy as np
from os import path, listdir
# Induce determinism
np.random.seed(133742)
# Makes the "leave" argument default to False
tqdm = partial(tqdm, leave = False)
@ -42,8 +45,8 @@ def __main__(data_path: str) -> None:
y.append(y_i)
X, y = np.asarray(X), np.asarray(y)
# idx = np.random.permutation(y.shape[0])
# X, y = X[idx], y[idx]
idx = np.random.permutation(y.shape[0])
X, y = X[idx], y[idx]
for org, s in tqdm(zip("Xy", [X, y]), desc = f"Writing {set_name}"):
with open(f"{data_path}/{org}_{set_name}.bin", "w") as out:

View File

@ -2,6 +2,14 @@ from typing import Callable, Iterable, Union, Any
from tqdm import tqdm
def njit(f: Union[Callable, str] = None, *args, **kwargs) -> Callable:
"""Wrapper for optional numba's njit decorator
Args:
f (Union[Callable, str], optional): Function to wrap with numba. Defaults to None.
Returns:
Callable: Wrapped function.
"""
def decorator(func: Callable) -> Any:
return func
@ -10,4 +18,13 @@ def njit(f: Union[Callable, str] = None, *args, **kwargs) -> Callable:
return decorator
def tqdm_iter(iter: Iterable, desc: str):
return tqdm(iter, leave = False, desc = desc)
"""Wrapper for optional tqdm iterator progress bar.
Args:
iter (Iterable): Object to iterate over.
desc (str): Description written to stdout.
Returns:
_type_: Wrapped iterator.
"""
return tqdm(iter, leave = False, desc = desc)

View File

@ -0,0 +1,15 @@
services:
violajones-python:
image: saundersp/violajones-python
build: .
volumes:
- ./models:/home/ViolaJones/python/models
- ./out:/home/ViolaJones/python/out
- ../data:/home/ViolaJones/data
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]

View File

@ -2,14 +2,15 @@
# Author: @saundersp
from ViolaJones import train_viola_jones, classify_viola_jones
from toolbox import state_saver, picke_multi_loader, format_time_ns, benchmark_function, unit_test_argsort_2d
from toolbox_unit_test import format_time_ns_test
#from toolbox import state_saver, pickle_multi_loader, format_time_ns, benchmark_function, unit_test_argsort_2d
from toolbox import state_saver, format_time_ns, benchmark_function, unit_test_argsort_2d
from toolbox import header, footer, formatted_row, formatted_line
from toolbox_unit_test import format_time_test, format_time_ns_test
from sklearn.metrics import accuracy_score, f1_score, confusion_matrix
from sklearn.feature_selection import SelectPercentile, f_classif
#from sklearn.feature_selection import SelectPercentile, f_classif
from common import load_datasets, unit_test
from ViolaJones import build_features, get_best_anova_features
from typing import Tuple
from ViolaJones import build_features # , get_best_anova_features
from typing import Tuple, List
from time import perf_counter_ns
from os import makedirs
import numpy as np
@ -19,44 +20,51 @@ if __DEBUG:
from config import IDX_INSPECT, IDX_INSPECT_OFFSET
if GPU_BOOSTED:
from ViolaJonesGPU import apply_features, set_integral_image, argsort
from ViolaJonesGPU import apply_features, set_integral_image, argsort_2d
label = 'GPU' if COMPILE_WITH_C else 'PGPU'
# The parallel prefix sum doesn't use the whole GPU so numba output some annoying warnings, this disables it
from numba import config
config.CUDA_LOW_OCCUPANCY_WARNINGS = 0
else:
from ViolaJonesCPU import apply_features, set_integral_image, argsort
from ViolaJonesCPU import apply_features, set_integral_image, argsort_2d
label = 'CPU' if COMPILE_WITH_C else 'PY'
def preprocessing() -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
"""Load the dataset, calculate features and integral images, apply features to images and calculate argsort of the featured images.
def preprocessing() -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
"""Execute the preprocessing phase
The preprocessing phase consist of the following steps :
- Load the dataset
- Calculate features
- Calculate integral images
- Apply features to images
- Calculate argsort of the featured images
Returns:
Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: X_train_feat, X_train_feat_argsort, y_train, X_test_feat, y_test
Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]: Tuple containing in order : training features, training features sorted indexes, training labels, testing features, testing labels
"""
# Creating state saver folders if they don't exist already
if SAVE_STATE:
for folder_name in ["models", "out"]:
for folder_name in ['models', 'out']:
makedirs(folder_name, exist_ok = True)
preproc_timestamp = perf_counter_ns()
preproc_gaps = [49, -18, 29]
header(['Preprocessing', 'Time spent (ns)', 'Formatted time spent'], preproc_gaps)
header(preproc_gaps, ['Preprocessing', 'Time spent (ns)', 'Formatted time spent'])
X_train, y_train, X_test, y_test = state_saver('Loading sets', preproc_gaps[0], ['X_train', 'y_train', 'X_test', 'y_test'],
load_datasets, FORCE_REDO, SAVE_STATE)
load_datasets, FORCE_REDO, SAVE_STATE)
if __DEBUG:
print("X_train")
print('X_train')
print(X_train.shape)
print(X_train[IDX_INSPECT])
print("X_test")
print('X_test')
print(X_test.shape)
print(X_test[IDX_INSPECT])
print("y_train")
print('y_train')
print(y_train.shape)
print(y_train[IDX_INSPECT: IDX_INSPECT + IDX_INSPECT_OFFSET])
print("y_test")
print('y_test')
print(y_test.shape)
print(y_test[IDX_INSPECT: IDX_INSPECT + IDX_INSPECT_OFFSET])
@ -64,7 +72,7 @@ def preprocessing() -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
FORCE_REDO, SAVE_STATE)
if __DEBUG:
print("feats")
print('feats')
print(feats.shape)
print(feats[IDX_INSPECT].ravel())
@ -74,10 +82,10 @@ def preprocessing() -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
lambda: set_integral_image(X_test), FORCE_REDO, SAVE_STATE)
if __DEBUG:
print("X_train_ii")
print('X_train_ii')
print(X_train_ii.shape)
print(X_train_ii[IDX_INSPECT])
print("X_test_ii")
print('X_test_ii')
print(X_test_ii.shape)
print(X_test_ii[IDX_INSPECT])
@ -88,45 +96,46 @@ def preprocessing() -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
del X_train_ii, X_test_ii, feats
if __DEBUG:
print("X_train_feat")
print('X_train_feat')
print(X_train_feat.shape)
print(X_train_feat[IDX_INSPECT, : IDX_INSPECT_OFFSET])
print("X_test_feat")
print('X_test_feat')
print(X_test_feat.shape)
print(X_test_feat[IDX_INSPECT, : IDX_INSPECT_OFFSET])
#indices = state_saver("Selecting best features training set", "indices", force_redo = True, save_state = SAVE_STATE,
#indices = state_saver('Selecting best features training set', 'indices', force_redo = FORCE_REDO, save_state = SAVE_STATE,
# fnc = lambda: SelectPercentile(f_classif, percentile = 10).fit(X_train_feat.T, y_train).get_support(indices = True))
#indices = state_saver("Selecting best features training set", "indices", force_redo = FORCE_REDO, save_state = SAVE_STATE,
#indices = state_saver('Selecting best features training set', 'indices', force_redo = FORCE_REDO, save_state = SAVE_STATE,
# fnc = lambda: get_best_anova_features(X_train_feat, y_train))
#indices = benchmark_function("Selecting best features (manual)", lambda: get_best_anova_features(X_train_feat, y_train))
#indices = benchmark_function('Selecting best features (manual)', lambda: get_best_anova_features(X_train_feat, y_train))
#if __DEBUG:
# print("indices")
# print('indices')
# print(indices.shape)
# print(indices[IDX_INSPECT: IDX_INSPECT + IDX_INSPECT_OFFSET])
# assert indices.shape[0] == indices_new.shape[0], f"Indices length not equal : {indices.shape} != {indices_new.shape}"
# assert (eq := indices == indices_new).all(), f"Indices not equal : {eq.sum() / indices.shape[0]}"
# assert indices.shape[0] == indices_new.shape[0], f'Indices length not equal : {indices.shape} != {indices_new.shape}'
# assert (eq := indices == indices_new).all(), f'Indices not equal : {eq.sum() / indices.shape[0]}'
# X_train_feat, X_test_feat = X_train_feat[indices], X_test_feat[indices]
X_train_feat_argsort = state_saver(f'Precalculating training set argsort ({label})', preproc_gaps[0], f'X_train_feat_argsort_{label}',
lambda: argsort(X_train_feat), FORCE_REDO, SAVE_STATE)
lambda: argsort_2d(X_train_feat), FORCE_REDO, SAVE_STATE)
if __DEBUG:
print("X_train_feat_argsort")
print('X_train_feat_argsort')
print(X_train_feat_argsort.shape)
print(X_train_feat_argsort[IDX_INSPECT, : IDX_INSPECT_OFFSET])
benchmark_function('Arg unit test', preproc_gaps[0], lambda: unit_test_argsort_2d(X_train_feat, X_train_feat_argsort))
X_test_feat_argsort = state_saver(f"Precalculating testing set argsort ({label})", f"X_test_feat_argsort_{label}",
lambda: argsort(X_test_feat), FORCE_REDO, SAVE_STATE)
X_test_feat_argsort = state_saver(f'Precalculating testing set argsort ({label})', preproc_gaps[0], f'X_test_feat_argsort_{label}',
lambda: argsort_2d(X_test_feat), FORCE_REDO, SAVE_STATE)
if __DEBUG:
print("X_test_feat_argsort")
print('X_test_feat_argsort')
print(X_test_feat_argsort.shape)
print(X_test_feat_argsort[IDX_INSPECT, : IDX_INSPECT_OFFSET])
benchmark_function("Arg unit test", lambda: unit_test_argsort_2d(X_test_feat, X_test_feat_argsort))
benchmark_function('Arg unit test', lambda: unit_test_argsort_2d(X_test_feat, X_test_feat_argsort))
time_spent = perf_counter_ns() - preproc_timestamp
formatted_line(preproc_gaps, '', '', '', '')
formatted_row(preproc_gaps, ['Preprocessing summary', f'{time_spent:,}', format_time_ns(time_spent)])
@ -138,16 +147,17 @@ def train(X_train_feat: np.ndarray, X_train_feat_argsort: np.ndarray, y_train: n
"""Train the weak classifiers.
Args:
X_train (np.ndarray): Training images.
X_train_feat_argsort (np.ndarray): Sorted indexes of the training images features.
y_train (np.ndarray): Training labels.
X_train (np.ndarray): Training images
X_train_feat_argsort (np.ndarray): Sorted indexes of the training images features
y_train (np.ndarray): Training labels
Returns: List of trained models
Returns:
List[np.ndarray]: List of trained models
"""
training_timestamp = perf_counter_ns()
training_gaps = [26, -18, 29]
header(['Training', 'Time spent (ns)', 'Formatted time spent'], training_gaps)
header(training_gaps, ['Training', 'Time spent (ns)', 'Formatted time spent'])
models = []
for T in TS:
@ -157,9 +167,9 @@ def train(X_train_feat: np.ndarray, X_train_feat_argsort: np.ndarray, y_train: n
models.append([alphas, final_classifiers])
if __DEBUG:
print("alphas")
print('alphas')
print(alphas)
print("final_classifiers")
print('final_classifiers')
print(final_classifiers)
time_spent = perf_counter_ns() - training_timestamp
@ -173,15 +183,15 @@ def testing_and_evaluating(models: List[np.ndarray], X_train_feat: np.ndarray, y
"""Benchmark the trained classifiers on the training and testing sets.
Args:
models (List[np.ndarray]): List of trained models.
X_train_feat (np.ndarray): Training features.
y_train (np.ndarray): Training labels.
X_test_feat (np.ndarray): Testing features.
y_test (np.ndarray): Testing labels.
models (List[np.ndarray]): List of trained models
X_train_feat (np.ndarray): Training features
y_train (np.ndarray): Training labels
X_test_feat (np.ndarray): Testing features
y_test (np.ndarray): Testing labels
"""
testing_gaps = [26, -19, 24, -19, 24]
header(['Testing', 'Time spent (ns) (E)', 'Formatted time spent (E)', 'Time spent (ns) (T)', 'Formatted time spent (T)'], testing_gaps)
header(testing_gaps, ['Testing', 'Time spent (ns) (E)', 'Formatted time spent (E)', 'Time spent (ns) (T)', 'Formatted time spent (T)'])
performances = []
total_train_timestamp = 0
@ -213,7 +223,7 @@ def testing_and_evaluating(models: List[np.ndarray], X_train_feat: np.ndarray, y
footer(testing_gaps)
evaluating_gaps = [19, 7, 6, 6, 6, 7, 6, 6, 6]
header(['Evaluating', 'ACC (E)', 'F1 (E)', 'FN (E)', 'FP (E)', 'ACC (T)', 'F1 (T)', 'FN (T)', 'FP (T)'], evaluating_gaps)
header(evaluating_gaps, ['Evaluating', 'ACC (E)', 'F1 (E)', 'FN (E)', 'FP (E)', 'ACC (T)', 'F1 (T)', 'FN (T)', 'FP (T)'])
for T, (e_acc, e_f1, e_FN, e_FP, t_acc, t_f1, t_FN, t_FP) in zip(TS, performances):
print(f'│ ViolaJones T = {T:<4}{e_acc:>7.2%}{e_f1:>6.2f}{e_FN:>6,}{e_FP:>6,}', end = '')
@ -224,7 +234,7 @@ def testing_and_evaluating(models: List[np.ndarray], X_train_feat: np.ndarray, y
def main() -> None:
unit_timestamp = perf_counter_ns()
unit_gaps = [27, -18, 29]
header(['Unit testing', 'Time spent (ns)', 'Formatted time spent'], unit_gaps)
header(unit_gaps, ['Unit testing', 'Time spent (ns)', 'Formatted time spent'])
benchmark_function('testing format_time', unit_gaps[0], format_time_test)
benchmark_function('testing format_time_ns', unit_gaps[0], format_time_ns_test)
time_spent = perf_counter_ns() - unit_timestamp
@ -235,12 +245,12 @@ def main() -> None:
X_train_feat, X_train_feat_argsort, y_train, X_test_feat, y_test = preprocessing()
models = train(X_train_feat, X_train_feat_argsort, y_train)
# X_train_feat, X_test_feat = picke_multi_loader([f"X_train_feat_{label}", f"X_test_feat_{label}"], OUT_DIR)
# indices = picke_multi_loader(["indices"], OUT_DIR)[0]
# X_train_feat, X_test_feat = pickle_multi_loader([f'X_train_feat_{label}', f'X_test_feat_{label}'], OUT_DIR)
# indices = pickle_multi_loader(['indices'], OUT_DIR)[0]
# X_train_feat, X_test_feat = X_train_feat[indices], X_test_feat[indices]
testing_and_evaluating(models, X_train_feat, y_train, X_test_feat, y_test)
unit_test(TS)
if __name__ == "__main__":
if __name__ == '__main__':
main()

View File

@ -1,3 +1,3 @@
numba
scikit-learn
tqdm
numba==0.59.1
scikit-learn==1.4.1.post1
tqdm==4.66.2

View File

@ -1,189 +0,0 @@
import numpy as np
from numba import cuda, config, njit
config.CUDA_LOW_OCCUPANCY_WARNINGS = 0
#import matplotlib.pyplot as plt
from tqdm import tqdm
from time import perf_counter_ns
from toolbox import format_time_ns
from pickle import load, dump
from sys import argv
def get(a):
with open(f"{a}.pkl", 'rb') as f:
return load(f)
def save(a, name) -> None:
with open(name, 'wb') as f:
dump(a, f)
def diff(folder, a, label1, label2):
af, bf = get(f"{folder}/{a}_{label1}"), get(f"{folder}/{a}_{label2}")
#print(af)
#print(bf)
print((af - bf).mean())
if __name__ == "__main__":
if len(argv) == 5:
diff(argv[1], argv[4], argv[2], argv[3])
def py_mean(a, b):
s = 0.0
for a_i, b_i in zip(a, b):
s += a_i * b_i
return s / a.shape[0]
def np_mean(a, b):
return np.mean(a * b)
@njit('float64(float64[:], float64[:])', fastmath = True, nogil = True)
def nb_mean(a, b):
return np.mean(a * b)
@njit('float64(float64[:], float64[:])', fastmath = True, nogil = True)
def nb_mean_loop(a, b):
s = 0.0
for a_i, b_i in zip(a, b):
s += a_i * b_i
return s / a.shape[0]
@cuda.jit('void(float64[:], float64[:], float64[:])', fastmath = True)
def cuda_mean_kernel(r, a, b):
s = 0.0
for a_i, b_i in zip(a, b):
s += a_i * b_i
r[0] = s / a.shape[0]
def cuda_mean(a, b):
r = cuda.to_device(np.empty(1, dtype = np.float64))
d_a = cuda.to_device(a)
d_b = cuda.to_device(b)
cuda_mean_kernel[1, 1](r, d_a, d_b)
return r.copy_to_host()[0]
def test_and_compare(labels, fncs, a, b):
m = []
for fnc in tqdm(fncs, leave = False, desc = "Calculating..."):
s = perf_counter_ns()
m.append([fnc(a, b), perf_counter_ns() - s])
print("Results:")
[print(f"\t{label:<10} {m_i:<20} {format_time_ns(time_i)}") for ((m_i, time_i), label) in zip(m, labels)]
print("Comparaison:")
for i, (m_i, label_i) in enumerate(zip(m, labels)):
for j, (m_j, label_j) in enumerate(zip(m, labels)):
if i >= j:
continue
print(f"\t{label_i:<10} vs {label_j:<10} - {abs(m_i[0] - m_j[0])}")
if __name__ == "__main__":
np.set_printoptions(linewidth = 10000, threshold = 1000)
N = int(2**20)
labels = ["Python", "Numpy", "Numba", "Numba loop", "CUDA"]
fncs = [py_mean, np_mean, nb_mean, nb_mean_loop, cuda_mean]
print(f"RANDOM for N={N}")
total_size = (2 * 8 * N)
print(f"Size = {total_size} B")
print(f"Size = {total_size // 1024} kB")
print(f"Size = {total_size // 1024 // 1024} MB")
print(f"Size = {total_size // 1024 // 1024 // 1024} GB")
a, b = np.random.rand(N).astype(np.float64), np.random.rand(N).astype(np.float64)
test_and_compare(labels, fncs, a, b)
del a, b
print(f"\nDETERMINSTIC for N={N}")
total_size = (2 * 8 * N) + (8 * N)
print(f"Size = {total_size} B")
print(f"Size = {total_size // 1024} kB")
print(f"Size = {total_size // 1024 // 1024} MB")
print(f"Size = {total_size // 1024 // 1024 // 1024} GB")
mask = np.arange(N, dtype = np.uint64)
a = np.ones(N, dtype = np.float64)
a[mask < N//2] = 0.1
del mask
b = np.ones(N, dtype = np.float64)
test_and_compare(labels, fncs, a, b)
del a, b
#from ViolaJonesGPU import argsort as argsort_GPU
#from ViolaJonesCPU import argsort as argsort_CPU
#from toolbox import unit_test_argsort_2d, benchmark_function
#labels = ["Numpy", "Numba", "CUDA"]
#a = np.random.randint(2**12, size = (2**20, 2**8), dtype = np.int32)
#m = [benchmark_function(f"Argsort {label}", lambda: f(np.copy(a))) for (label, f) in zip(labels, [
# lambda a: np.argsort(a).astype(np.uint16), argsort_CPU, argsort_GPU
#])]
#for i, (m_i, label_i) in enumerate(zip(m, labels)):
# #for j, (m_j, label_j) in enumerate(zip(m, labels)):
# # if i >= j:
# # continue
# # print(f"\t{label_i:<10} vs {label_j:<10} - {(m_i == m_j).mean()}")
# benchmark_function(f"Unit test {label_i}", lambda: unit_test_argsort_2d(a, m_i))
#for i in tqdm(range(X.shape[0]), leave = False, desc = "Extract image"):
# x = X[i]
# y = Y[i]
# fig = plt.figure()
# plt.imshow(x, cmap = 'gray')
# plt.savefig(f"imgs/{y}/{i}.png")
# plt.close(fig)
#def extract_FD(Xy):
# X_c, Y_c = [], []
# for x,y in Xy:
# X_c.append(x)
# Y_c.append(y)
# X_c = np.asarray(X_c)
# Y_c = np.asarray(Y_c)
# return X_c, Y_c
#X_train, y_train = get('out/X_train'), get('out/y_train')
#X_test, y_test = get('out/X_test'), get('out/y_test')
#X_train, y_train = extract_FD(get('/home/_aspil0w/git/FaceDetection/training'))
#X_test, y_test = extract_FD(get('/home/_aspil0w/git/FaceDetection/test'))
#save(X_train, 'out/X_train'), save(y_train, 'out/y_train')
#save(X_test, 'out/X_test'), save(y_test, 'out/y_test')
#print(X_train.shape, X_train_org.shape, X_train.shape == X_train_org.shape)
#print((X_train == X_train_org).mean())
#print(y_train.shape, y_train_org.shape, y_train.shape == y_train_org.shape)
#print((y_train == y_train_org).mean())
#print(X_test.shape, X_test_org.shape, X_test.shape == X_test_org.shape)
#print((X_test == X_test_org).mean())
#print(y_test.shape, y_test_org.shape, y_test.shape == y_test_org.shape)
#print((y_test == y_test_org).mean())
#@njit('uint16[:](uint8[:, :, :], uint8[:, :, :])')
#def arg_find(X, X_org):
# arg = np.empty(X.shape[0], dtype = np.uint16)
# for i, x in enumerate(X_org):
# found = False
# for j, x_org in enumerate(X):
# if np.all(x == x_org):
# arg[i] = j
# found = True
# break
# assert found, "Image not found"
# return arg
#print("Arg find results train")
#arg_train = arg_find(X_train, X_train_org)
#print((X_train[arg_train] == X_train_org).mean())
#print((y_train[arg_train] == y_train_org).mean())
#print("Arg find results test")
#arg_test = arg_find(X_test, X_test_org)
#print((X_test[arg_test] == X_test_org).mean())
#print((y_test[arg_test] == y_test_org).mean())
#for i in tqdm(range(X_c.shape[0]), leave = False, desc = "Extract image"):
# x = X_c[i]
# y = Y_c[i]
# fig = plt.figure()
# plt.imshow(x, cmap = 'gray')
# plt.savefig(f"imgs2/{y}/{i}.png")
# plt.close(fig)

View File

@ -1,90 +1,141 @@
from typing import Any, Callable, List, Union, Final
from time import perf_counter_ns
from numba import njit
import numpy as np
from sys import stderr
import pickle
import os
from config import MODEL_DIR, OUT_DIR
from config import MODEL_DIR, OUT_DIR, __DEBUG
from decorators import njit
time_formats: Final = ["ns", "µs", "ms", "s", "m", "h", "j", "w", "M", "y", "c"]
def formatted_row(gaps: list[int], titles: list[str], separator: str = '') -> None:
"""Print a formatted row of titles with of gaps seperated by a separator.
Args:
gaps: List of size gaps
titles: List of titles
separator: Separator character between each gap
"""
for gap, title in zip(gaps, titles):
print(f"{separator} {title:{'>' if gap < 0 else '<'}{abs(gap)}} ", end = '')
print(separator)
def formatted_line(gaps: list[int], right: str, middle: str, separator: str, left: str) -> None:
print(right, end = '')
def formatted_line(gaps: list[int], left: str, middle: str, separator: str, right: str) -> None:
"""Print a formatted line of repeated characters.
Args:
gaps: List of size gaps
left: Character on the left
middle: Character between each separator
separator: Separator character between each gap
right: Character on the right
"""
print(left, end = '')
last_gap = len(gaps) - 1
for i, gap in enumerate(gaps):
print(f'{separator * (abs(gap) + 2)}', end = '')
if i != last_gap:
print(middle, end = '')
print(left)
print(right)
def header(titles: list[str], gaps: list[int]) -> None:
def header(gaps: list[int], titles: list[str]) -> None:
"""Print a formatted header with the given titles and sizes.
Args:
gaps: List of size gaps
titles: List of titles
"""
formatted_line(gaps, '', '', '', '')
formatted_row(gaps, titles)
formatted_line(gaps, '', '', '', '')
def footer(gaps: list[int]) -> None:
"""Print a formatted footer with the given sizes.
Args:
gaps: List of size gaps
"""
formatted_line(gaps, '', '', '', '')
time_formats: Final = ['ns', 'µs', 'ms', 's', 'm', 'h', 'j', 'w', 'M', 'y', 'c']
time_numbers: Final = np.array([1, 1e3, 1e6, 1e9, 6e10, 36e11, 864e11, 6048e11, 26784e11, 31536e12, 31536e14], dtype = np.uint64)
@njit('str(uint64)')
def format_time_ns(time: int) -> str:
"""Format the time in nanoseconds in human readable format.
Args:
time (int): Time in nanoseconds.
time (int): Time in nanoseconds
Returns:
str: The formatted human readable string.
str: The formatted human readable string
"""
assert time >= 0, "Incorrect time stamp"
assert time >= 0, 'Incorrect time stamp'
if time == 0:
return "0ns"
return '0ns'
s = ""
s = ''
for i in range(time_numbers.shape[0])[::-1]:
if time >= time_numbers[i]:
res = int(time // time_numbers[i])
time = time % time_numbers[i]
s += f"{res}{time_formats[i]} "
s += f'{res}{time_formats[i]} '
assert time == 0, "Leftover in formatting time !"
assert time == 0, 'Leftover in formatting time !'
return s.rstrip()
def picke_multi_loader(filenames: List[str], save_dir: str = MODEL_DIR) -> List[Any]:
@njit('str(uint64)')
def format_time(time: int) -> str:
"""Format the time in seconds in human readable format.
Args:
time (int): Time in seconds
Returns:
str: The formatted human readable string
"""
assert time >= 0, 'Incorrect time stamp'
if time == 0:
return '0s'
s = ''
for i in range(3, time_numbers.shape[0])[::-1]:
time_number = time_numbers[i] / int(1e9)
if time >= time_number:
res = int(time // time_number)
time = time % time_number
s += f'{res}{time_formats[i]} '
assert time == 0, 'Leftover in formatting time !'
return s.rstrip()
def pickle_multi_loader(filenames: List[str], save_dir: str = MODEL_DIR) -> List[Any]:
"""Load multiple pickle data files.
Args:
filenames (List[str]): List of all the filename to load.
save_dir (str, optional): Path of the files to load. Defaults to MODELS_DIR (see config.py).
filenames (List[str]): List of all the filename to load
save_dir (str, optional): Path of the files to load. Defaults to MODELS_DIR (see config.py)
Returns:
List[Any]. List of loaded pickle data files.
List[Any]. List of loaded pickle data files
"""
b = []
for f in filenames:
filepath = f"{save_dir}/{f}.pkl"
filepath = f'{save_dir}/{f}.pkl'
if os.path.exists(filepath):
with open(filepath, "rb") as filebyte:
b.append(pickle.load(filebyte))
with open(filepath, 'rb') as file_bytes:
b.append(pickle.load(file_bytes))
else:
b.append(None)
return b
def benchmark_function(step_name: str, column_width: int, fnc: Callable) -> Any:
"""Benchmark a function and display the result of stdout.
"""Benchmark a function and display the result in stdout.
Args:
step_name (str): Name of the function to call.
fnc (Callable): Function to call.
step_name (str): Name of the function to call
fnc (Callable): Function to call
Returns:
Any: Result of the function.
Any: Result of the function
"""
print(f'{step_name}...', file = stderr, end = '\r')
s = perf_counter_ns()
@ -98,34 +149,34 @@ def state_saver(step_name: str, column_width: int, filename: Union[str, List[str
"""Either execute a function then saves the result or load the already existing result.
Args:
step_name (str): Name of the function to call.
filename (Union[str, List[str]]): Name or list of names of the filenames where the result(s) are saved.
fnc ([type]): Function to call.
force_redo (bool, optional): Recall the function even if the result(s) is already saved. Defaults to False.
save_dir (str, optional): Path of the directory to save the result(s). Defaults to OUT_DIR (see config.py).
step_name (str): Name of the function to call
filename (Union[str, List[str]]): Name or list of names of the filenames where the result(s) are saved
fnc ([type]): Function to call
force_redo (bool, optional): Recall the function even if the result(s) is already saved. Defaults to False
save_dir (str, optional): Path of the directory to save the result(s). Defaults to OUT_DIR (see config.py)
Returns:
Any: The result(s) of the called function
"""
if isinstance(filename, str):
if not os.path.exists(f"{save_dir}/{filename}.pkl") or force_redo:
if not os.path.exists(f'{save_dir}/{filename}.pkl') or force_redo:
b = benchmark_function(step_name, column_width, fnc)
if save_state:
with open(f"{save_dir}/{filename}.pkl", 'wb') as f:
print(f'Saving results of {step_name}', file = stderr, end = '\r')
with open(f'{save_dir}/{filename}.pkl', 'wb') as f:
pickle.dump(b, f)
print(' ' * 100, file = stderr, end = '\r')
return b
else:
with open(f"{save_dir}/{filename}.pkl", "rb") as f:
print(f'Loading results of {step_name}', file = stderr, end = '\r')
with open(f'{save_dir}/{filename}.pkl', 'rb') as f:
res = pickle.load(f)
print(f"{step_name:<{column_width}}{'None':>18}{'loaded saved state':<29}")
return res
elif isinstance(filename, list):
abs = False
for fn in filename:
if not os.path.exists(f"{save_dir}/{fn}.pkl"):
if not os.path.exists(f'{save_dir}/{fn}.pkl'):
abs = True
break
if abs or force_redo:
@ -133,7 +184,7 @@ def state_saver(step_name: str, column_width: int, filename: Union[str, List[str
if save_state:
print(f'Saving results of {step_name}', file = stderr, end = '\r')
for bi, fnI in zip(b, filename):
with open(f"{save_dir}/{fnI}.pkl", 'wb') as f:
with open(f'{save_dir}/{fnI}.pkl', 'wb') as f:
pickle.dump(bi, f)
print(' ' * 100, file = stderr, end = '\r')
return b
@ -142,21 +193,31 @@ def state_saver(step_name: str, column_width: int, filename: Union[str, List[str
b = []
print(f'Loading results of {step_name}', file = stderr, end = '\r')
for fn in filename:
with open(f"{save_dir}/{fn}.pkl", "rb") as f:
with open(f'{save_dir}/{fn}.pkl', 'rb') as f:
b.append(pickle.load(f))
print(' ' * 100, file = stderr, end = '\r')
return b
else:
assert False, f"Incompatible filename type = {type(filename)}"
assert False, f'Incompatible filename type = {type(filename)}'
@njit('boolean(int32[:, :], uint16[:, :])')
def unit_test_argsort_2d(arr: np.ndarray, indices: np.ndarray) -> bool:
"""Test if a given 2D array of indices sort a given 2D array.
Args:
arr (np.ndarray): 2D Array of data
indices (np.ndarray): 2D Indices that sort the array
Returns:
bool: Whether the test was successful
"""
n = indices.shape[0]
total = indices.shape[0] * indices.shape[1]
for i, sub_indices in enumerate(indices):
for j in range(sub_indices.shape[0] - 1):
if arr[i, sub_indices[j]] <= arr[i, sub_indices[j + 1]]:
n += 1
if n != total:
print(n, total, n / (total))
if __DEBUG:
if n != total:
print(n, total, n / (total))
return n == total

View File

@ -1,67 +1,132 @@
from typing import Any
from toolbox import format_time_ns
from toolbox import format_time, format_time_ns
def Assert(name: str, expected: Any, result: Any):
"""Test if a given result is equal of the expected one and log result
Args:
name (str): name of the unit test
expected (Any): expected result of the function call
result (Any): result of the function
"""
if expected != result:
print(f"For test name {name} Expected '{expected}' but got '{result}' instead")
assert False
def format_time_ns_test() -> None:
# https://en.wikipedia.org/wiki/Unit_of_time
Assert("format_time_ns null", "0ns", format_time_ns(0));
Assert("format_time_ns nanosecond", "1ns", format_time_ns(1));
Assert("format_time_ns shake", "10ns", format_time_ns(10));
Assert("format_time_ns microsecond", "1µs", format_time_ns(int(1e3)));
Assert("format_time_ns millisecond", "1ms", format_time_ns(int(1e6)));
Assert("format_time_ns centisecond", "10ms", format_time_ns(int(1e7)));
Assert("format_time_ns decisecond", "100ms", format_time_ns(int(1e8)));
Assert("format_time_ns second", "1s", format_time_ns(int(1e9)));
Assert("format_time_ns decasecond", "10s", format_time_ns(int(1e10)));
Assert("format_time_ns minute", "1m", format_time_ns(int(6e10)));
Assert("format_time_ns milliday", "1m 26s 400ms", format_time_ns(int(864e8)));
Assert("format_time_ns hectosecond", "1m 40s", format_time_ns(int(1e11)));
Assert("format_time_ns kilosecond", "16m 40s", format_time_ns(int(1e12)));
Assert("format_time_ns hour", "1h", format_time_ns(int(36e11)));
Assert("format_time_ns day", "1j", format_time_ns(int(864e11)));
Assert("format_time_ns week/sennight", "1w", format_time_ns(int(6048e11)));
Assert("format_time_ns megasecond", "1w 4j 13h 46m 40s", format_time_ns(int(1e15)));
Assert("format_time_ns fortnight", "2w", format_time_ns(int(12096e11)));
Assert("format_time_ns lunar month (draconitic)", "3w 6j 5h 5m 35s 800ms", format_time_ns(int(23511358e8)));
Assert("format_time_ns lunar month (tropical)", "3w 6j 7h 43m 4s 700ms", format_time_ns(int(23605847e8)));
Assert("format_time_ns lunar month (sidereal)", "3w 6j 7h 43m 11s 600ms", format_time_ns(int(23605916e8)));
Assert("format_time_ns lunar month (anomalistic)", "3w 6j 13h 18m 33s 200ms", format_time_ns(int(23807132e8)));
Assert("format_time_ns lunar month (synodic)", "4w 1j 12h 44m 2s 900ms", format_time_ns(int(25514429e8)));
Assert("format_time_ns month", "1M", format_time_ns(int(26784e11)));
Assert("format_time_ns quarantine", "1M 1w 2j", format_time_ns(int(3456e12)));
Assert("format_time_ns semester", "4M 2j", format_time_ns(int(108864e11)));
Assert("format_time_ns lunar year", "11M 1w 6j 8h 52m 48s", format_time_ns(int(30617568e9)));
Assert("format_time_ns year", "1y", format_time_ns(int(31536e12)));
Assert("format_time_ns tropical year", "1y 5h 48m 45s 216ms", format_time_ns(int(31556925216e6)));
Assert("format_time_ns gregorian year", "1y 5h 49m 12s", format_time_ns(int(31556952e9)));
Assert("format_time_ns sidereal year", "1y 6h 9m 9s 763ms 545µs 600ns", format_time_ns(int(315581497635456e2)));
Assert("format_time_ns leap year", "1y 1j", format_time_ns(int(316224e11)));
Assert("format_time_ns olympiad", "4y", format_time_ns(int(126144e12)));
Assert("format_time_ns lusturm", "5y", format_time_ns(int(15768e13)));
Assert("format_time_ns decade", "10y", format_time_ns(int(31536e13)));
Assert("format_time_ns indiction", "15y", format_time_ns(int(47304e13)));
Assert("format_time_ns score", "20y", format_time_ns(int(63072e13)));
Assert("format_time_ns gigasecond", "31y 8M 1w 4j 1h 46m 40s", format_time_ns(int(1e18)));
Assert("format_time_ns jubilee", "50y", format_time_ns(int(15768e14)));
Assert("format_time_ns century", "1c", format_time_ns(int(31536e14)));
Assert("format_time_ns millennium", "10c", format_time_ns(int(31536e15)));
Assert("format_time_ns age", "257c 72y", format_time_ns(int(812745792e12)));
Assert("format_time_ns terasecond", "3170c 97y 10M 3w 4j 17h 46m 40s", format_time_ns(int(1e22)));
Assert("format_time_ns megaannum", "10000c", format_time_ns(int(31536e18)));
# Cannot use number bigger than currently supported ISO Python
#Assert("format_time_ns petasecond", "317097c 91y 11M 2w 4j 1h 46m 40s", format_time_ns(int(1e24)));
#Assert("format_time_ns galactic year", "2300000c", format_time_ns(int(725328e19)));
#Assert("format_time_ns eon", "10000000c", format_time_ns(int(31536e21)));
#Assert("format_time_ns kalpa", "43200000c", format_time_ns(int(13623552e19)));
#Assert("format_time_ns exasecond", "317097919c 83y 9M 1h 46m 40s", format_time_ns(int(1e27)));
#Assert("format_time_ns zettasecond", "", format_time_ns(int(1e30)));
#Assert("format_time_ns yottasecond", "", format_time_ns(int(1e33)));
#Assert("format_time_ns ronnasecond", "", format_time_ns(int(1e36)));
#Assert("format_time_ns quettasecond", "", format_time_ns(int(1e39)));
# uint64_t_MAX == 2**64 == 18446744073709551615I64u == -1
Assert("format_time_ns max", "5c 84y 11M 2j 23h 34m 33s 709ms 551µs 615ns", format_time_ns(2**64 - 1))
def format_time_test() -> None:
"""Test suite for the format_time output
See https://en.wikipedia.org/wiki/Unit_of_time for details
"""
Assert("format_time null", "0s", format_time(0))
Assert("format_time second", "1s", format_time(1))
Assert("format_time decasecond", "10s", format_time(10))
Assert("format_time minute", "1m", format_time(60))
Assert("format_time milliday", "1m 26s", format_time(86)) # missing 0.4s due to precision
Assert("format_time hectosecond", "1m 40s", format_time(100))
Assert("format_time kilosecond", "16m 40s", format_time(int(1e3)))
Assert("format_time hour", "1h", format_time(3600))
Assert("format_time day", "1j", format_time(86400))
Assert("format_time week/sennight", "1w", format_time(604800))
Assert("format_time megasecond", "1w 4j 13h 46m 40s", format_time(int(1e6)))
Assert("format_time fortnight", "2w", format_time(1209600))
Assert("format_time lunar month (draconitic)", "3w 6j 5h 5m 35s", format_time(2351135)) # missing 0.8 due to precision
Assert("format_time lunar month (tropical)", "3w 6j 7h 43m 4s", format_time(2360584)) # missing 0.7 due to precision
Assert("format_time lunar month (sidereal)", "3w 6j 7h 43m 11s", format_time(2360591)) # missing 0.6 to precision
Assert("format_time lunar month (anomalistic)", "3w 6j 13h 18m 33s", format_time(2380713)) # missing 0.2 due to precision
Assert("format_time lunar month (synodic)", "4w 1j 12h 44m 2s", format_time(2551442)) # missing 0.9 due to precision
Assert("format_time month", "1M", format_time(2678400))
Assert("format_time quarantine", "1M 1w 2j", format_time(int(3456e3)))
Assert("format_time semester", "4M 2j", format_time(10886400))
Assert("format_time lunar year", "11M 1w 6j 8h 52m 48s", format_time(30617568))
Assert("format_time year", "1y", format_time(int(31536e3)))
Assert("format_time tropical year", "1y 5h 48m 45s", format_time(31556925)) # missing 0.216 due to precision
Assert("format_time gregorian year", "1y 5h 49m 12s", format_time(31556952))
Assert("format_time sidereal year", "1y 6h 9m 9s", format_time(31558149)) # missing 0.7635456 due to precision
Assert("format_time leap year", "1y 1j", format_time(31622400))
Assert("format_time olympiad", "4y", format_time(int(126144e3)))
Assert("format_time lusturm", "5y", format_time(int(15768e4)))
Assert("format_time decade", "10y", format_time(int(31536e4)))
Assert("format_time indiction", "15y", format_time(int(47304e4)))
Assert("format_time score", "20y", format_time(int(63072e4)))
Assert("format_time gigasecond", "31y 8M 1w 4j 1h 46m 40s", format_time(int(1e9)))
Assert("format_time jubilee", "50y", format_time(int(15768e5)))
Assert("format_time century", "1c", format_time(int(31536e5)))
Assert("format_time millennium", "10c", format_time(int(31536e6)))
Assert("format_time age", "257c 72y", format_time(int(812745792e3)))
Assert("format_time terasecond", "3170c 97y 10M 3w 4j 17h 46m 40s", format_time(int(1e13)))
Assert("format_time megaannum", "10000c", format_time(int(31536e9)))
Assert("format_time petasecond", "317097c 91y 11M 2w 4j 1h 46m 40s", format_time(int(1e15)))
Assert("format_time galactic year", "2300000c", format_time(int(725328e10)))
Assert("format_time eon", "10000000c", format_time(int(31536e12)))
Assert("format_time kalpa", "43200000c", format_time(int(13623552e10)))
Assert("format_time exasecond", "317097919c 83y 9M 1h 46m 40s", format_time(int(1e18)))
# Cannot use number bigger than currently supported ISO Python
#Assert("format_time zettasecond", "", format_time(1e21))
#Assert("format_time yottasecond", "", format_time(1e24))
#Assert("format_time ronnasecond", "", format_time(1e27))
#Assert("format_time quettasecond", "", format_time(1e30))
# uint64_t_MAX == 2**64 == 18446744073709551615 == -1
Assert("format_time max", "5849424173c 55y 3w 5j 7h 16s", format_time(int(2**64 - 1)))
def format_time_ns_test() -> None:
"""Test suite for the format_time_ns output
See https://en.wikipedia.org/wiki/Unit_of_time for details
"""
Assert("format_time_ns null", "0ns", format_time_ns(0))
Assert("format_time_ns nanosecond", "1ns", format_time_ns(1))
Assert("format_time_ns shake", "10ns", format_time_ns(10))
Assert("format_time_ns microsecond", "1µs", format_time_ns(int(1e3)))
Assert("format_time_ns millisecond", "1ms", format_time_ns(int(1e6)))
Assert("format_time_ns centisecond", "10ms", format_time_ns(int(1e7)))
Assert("format_time_ns decisecond", "100ms", format_time_ns(int(1e8)))
Assert("format_time_ns second", "1s", format_time_ns(int(1e9)))
Assert("format_time_ns decasecond", "10s", format_time_ns(int(1e10)))
Assert("format_time_ns minute", "1m", format_time_ns(int(6e10)))
Assert("format_time_ns milliday", "1m 26s 400ms", format_time_ns(int(864e8)))
Assert("format_time_ns hectosecond", "1m 40s", format_time_ns(int(1e11)))
Assert("format_time_ns kilosecond", "16m 40s", format_time_ns(int(1e12)))
Assert("format_time_ns hour", "1h", format_time_ns(int(36e11)))
Assert("format_time_ns day", "1j", format_time_ns(int(864e11)))
Assert("format_time_ns week/sennight", "1w", format_time_ns(int(6048e11)))
Assert("format_time_ns megasecond", "1w 4j 13h 46m 40s", format_time_ns(int(1e15)))
Assert("format_time_ns fortnight", "2w", format_time_ns(int(12096e11)))
Assert("format_time_ns lunar month (draconitic)", "3w 6j 5h 5m 35s 800ms", format_time_ns(int(23511358e8)))
Assert("format_time_ns lunar month (tropical)", "3w 6j 7h 43m 4s 700ms", format_time_ns(int(23605847e8)))
Assert("format_time_ns lunar month (sidereal)", "3w 6j 7h 43m 11s 600ms", format_time_ns(int(23605916e8)))
Assert("format_time_ns lunar month (anomalistic)", "3w 6j 13h 18m 33s 200ms", format_time_ns(int(23807132e8)))
Assert("format_time_ns lunar month (synodic)", "4w 1j 12h 44m 2s 900ms", format_time_ns(int(25514429e8)))
Assert("format_time_ns month", "1M", format_time_ns(int(26784e11)))
Assert("format_time_ns quarantine", "1M 1w 2j", format_time_ns(int(3456e12)))
Assert("format_time_ns semester", "4M 2j", format_time_ns(int(108864e11)))
Assert("format_time_ns lunar year", "11M 1w 6j 8h 52m 48s", format_time_ns(int(30617568e9)))
Assert("format_time_ns year", "1y", format_time_ns(int(31536e12)))
Assert("format_time_ns tropical year", "1y 5h 48m 45s 216ms", format_time_ns(int(31556925216e6)))
Assert("format_time_ns gregorian year", "1y 5h 49m 12s", format_time_ns(int(31556952e9)))
Assert("format_time_ns sidereal year", "1y 6h 9m 9s 763ms 545µs 600ns", format_time_ns(int(315581497635456e2)))
Assert("format_time_ns leap year", "1y 1j", format_time_ns(int(316224e11)))
Assert("format_time_ns olympiad", "4y", format_time_ns(int(126144e12)))
Assert("format_time_ns lusturm", "5y", format_time_ns(int(15768e13)))
Assert("format_time_ns decade", "10y", format_time_ns(int(31536e13)))
Assert("format_time_ns indiction", "15y", format_time_ns(int(47304e13)))
Assert("format_time_ns score", "20y", format_time_ns(int(63072e13)))
Assert("format_time_ns gigasecond", "31y 8M 1w 4j 1h 46m 40s", format_time_ns(int(1e18)))
Assert("format_time_ns jubilee", "50y", format_time_ns(int(15768e14)))
Assert("format_time_ns century", "1c", format_time_ns(int(31536e14)))
Assert("format_time_ns millennium", "10c", format_time_ns(int(31536e15)))
Assert("format_time_ns age", "257c 72y", format_time_ns(int(812745792e12)))
Assert("format_time_ns terasecond", "3170c 97y 10M 3w 4j 17h 46m 40s", format_time_ns(int(1e22)))
Assert("format_time_ns megaannum", "10000c", format_time_ns(int(31536e18)))
# Cannot use number bigger than currently supported ISO Python
# Assert("format_time_ns petasecond", "317097c 91y 11M 2w 4j 1h 46m 40s", format_time_ns(int(1e24)))
# Assert("format_time_ns galactic year", "2300000c", format_time_ns(int(725328e19)))
# Assert("format_time_ns eon", "10000000c", format_time_ns(int(31536e21)))
# Assert("format_time_ns kalpa", "43200000c", format_time_ns(int(13623552e19)))
# Assert("format_time_ns exasecond", "317097919c 83y 9M 1h 46m 40s", format_time_ns(int(1e27)))
# Assert("format_time_ns zettasecond", "", format_time_ns(int(1e30)))
# Assert("format_time_ns yottasecond", "", format_time_ns(int(1e33)))
# Assert("format_time_ns ronnasecond", "", format_time_ns(int(1e36)))
# Assert("format_time_ns quettasecond", "", format_time_ns(int(1e39)))
# uint64_t_MAX == 2**64 == 18446744073709551615 == -1
Assert("format_time_ns max", "5c 84y 11M 2j 23h 34m 33s 709ms 551µs 615ns", format_time_ns(2**64 - 1))