from typing import Final import numpy as np DATA_DIR: Final = '../data' OUT_DIR: Final = './out' MODEL_DIR: Final = './models' NB_THREADS: Final = 1024 NB_THREADS_2D: Final = (32, 32) NB_THREADS_3D: Final = (16, 16, 4) M: Final = int(np.log2(NB_THREADS_2D[1])) # Save state to avoid recalculation on restart SAVE_STATE: Final = True # Redo the state even if it's already saved FORCE_REDO: Final = False # Use NJIT to greatly accelerate runtime COMPILE_WITH_C: Final = True # Use GPU to greatly accelerate runtime (as priority over NJIT) GPU_BOOSTED: Final = True # Depending on what you set, the output label will be as follow : # ┌────────────────┬─────────────┬───────┐ # │ COMPILE_WITH_C │ GPU_BOOSTED │ LABEL │ # ├────────────────┼─────────────┼───────┤ # │ True │ True │ GPU │ # │ True │ False │ CPU │ # │ False │ True │ PGPU │ # │ False │ False │ PY │ # └────────────────┴─────────────┴───────┘ # Number of weak classifiers # TS: Final = [1] # TS: Final = [1, 5, 10] TS: Final = [1, 5, 10, 25, 50] # TS: Final = [1, 5, 10, 25, 50, 100, 200] # TS: Final = [1, 5, 10, 25, 50, 100, 200, 300] # TS: Final = [1, 5, 10, 25, 50, 100, 200, 300, 400, 500, 1000] # Enable verbose output (for debugging purposes) __DEBUG: Final = False # Debugging options if __DEBUG: IDX_INSPECT: Final = 4548 IDX_INSPECT_OFFSET: Final = 100 np.seterr(all = 'raise') # Debug option (image width * log_10(length) + extra characters) np.set_printoptions(linewidth = 19 * 6 + 3)