import numpy as np DATA_DIR = "../data" OUT_DIR = "./out" MODEL_DIR = "./models" NB_THREADS = 1024 NB_THREADS_2D = (32, 32) NB_THREADS_3D = (16, 16, 4) M = int(np.log2(NB_THREADS_2D[1])) # Save state to avoid recalulation on restart SAVE_STATE = True # Redo the state even if it's already saved FORCE_REDO = False # Use NJIT to greatly accelerate runtime COMPILE_WITH_C = False # Use GPU to greatly accelerate runtime (as priority over NJIT) GPU_BOOSTED = True # Number of weak classifiers # TS = [1] # TS = [1, 5, 10] # TS = [1, 5, 10, 25, 50] # TS = [1, 5, 10, 25, 50, 100, 200] # TS = [1, 5, 10, 25, 50, 100, 200, 300] TS = [1, 5, 10, 25, 50, 100, 200, 300, 400, 500, 1000] # Enable verbose output (for debugging purposes) __DEBUG = False # Debugging options if __DEBUG: IDX_INSPECT = 4548 IDX_INSPECT_OFFSET = 100 np.seterr(all = 'raise') # Debug option (image width * log_10(length) + extra characters) np.set_printoptions(linewidth = 19 * 6 + 3)