#!/usr/bin/env python # Author: @saundersp from ViolaJones import train_viola_jones, classify_viola_jones from toolbox import state_saver, picke_multi_loader, format_time_ns, benchmark_function, toolbox_unit_test, unit_test_argsort_2d from sklearn.metrics import accuracy_score, f1_score, confusion_matrix from sklearn.feature_selection import SelectPercentile, f_classif from common import load_datasets, unit_test from ViolaJones import build_features, get_best_anova_features from typing import Tuple from time import perf_counter_ns from os import makedirs import numpy as np from config import FORCE_REDO, COMPILE_WITH_C, GPU_BOOSTED, TS, SAVE_STATE, MODEL_DIR, __DEBUG if __DEBUG: from config import IDX_INSPECT, IDX_INSPECT_OFFSET if GPU_BOOSTED: from ViolaJonesGPU import apply_features, set_integral_image, argsort label = 'GPU' if COMPILE_WITH_C else 'PGPU' # The parallel prefix sum doesn't use the whole GPU so numba output some annoying warnings, this disables it from numba import config config.CUDA_LOW_OCCUPANCY_WARNINGS = 0 else: from ViolaJonesCPU import apply_features, set_integral_image, argsort label = 'CPU' if COMPILE_WITH_C else 'PY' def preprocessing() -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: """Load the dataset, calculate features and integral images, apply features to images and calculate argsort of the featured images. Returns: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: X_train_feat, X_train_feat_argsort, y_train, X_test_feat, y_test """ # Creating state saver folders if they don't exist already if SAVE_STATE: for folder_name in ["models", "out"]: makedirs(folder_name, exist_ok = True) print(f"| {'Preprocessing':<49} | {'Time spent (ns)':<18} | {'Formatted time spent':<29} |\n|{'-'*51}|{'-'*20}|{'-'*31}|") X_train, y_train, X_test, y_test = state_saver("Loading sets", ["X_train", "y_train", "X_test", "y_test"], load_datasets, FORCE_REDO, SAVE_STATE) if __DEBUG: print("X_train") print(X_train.shape) print(X_train[IDX_INSPECT]) print("X_test") print(X_test.shape) print(X_test[IDX_INSPECT]) print("y_train") print(y_train.shape) print(y_train[IDX_INSPECT: IDX_INSPECT + IDX_INSPECT_OFFSET]) print("y_test") print(y_test.shape) print(y_test[IDX_INSPECT: IDX_INSPECT + IDX_INSPECT_OFFSET]) feats = state_saver("Building features", "feats", lambda: build_features(X_train.shape[1], X_train.shape[2]), FORCE_REDO, SAVE_STATE) if __DEBUG: print("feats") print(feats.shape) print(feats[IDX_INSPECT].ravel()) X_train_ii = state_saver(f"Converting training set to integral images ({label})", f"X_train_ii_{label}", lambda: set_integral_image(X_train), FORCE_REDO, SAVE_STATE) X_test_ii = state_saver(f"Converting testing set to integral images ({label})", f"X_test_ii_{label}", lambda: set_integral_image(X_test), FORCE_REDO, SAVE_STATE) if __DEBUG: print("X_train_ii") print(X_train_ii.shape) print(X_train_ii[IDX_INSPECT]) print("X_test_ii") print(X_test_ii.shape) print(X_test_ii[IDX_INSPECT]) X_train_feat = state_saver(f"Applying features to training set ({label})", f"X_train_feat_{label}", lambda: apply_features(feats, X_train_ii), FORCE_REDO, SAVE_STATE) X_test_feat = state_saver(f"Applying features to testing set ({label})", f"X_test_feat_{label}", lambda: apply_features(feats, X_test_ii), FORCE_REDO, SAVE_STATE) del X_train_ii, X_test_ii, feats if __DEBUG: print("X_train_feat") print(X_train_feat.shape) print(X_train_feat[IDX_INSPECT, : IDX_INSPECT_OFFSET]) print("X_test_feat") print(X_test_feat.shape) print(X_test_feat[IDX_INSPECT, : IDX_INSPECT_OFFSET]) #indices = state_saver("Selecting best features training set", "indices", force_redo = True, save_state = SAVE_STATE, # fnc = lambda: SelectPercentile(f_classif, percentile = 10).fit(X_train_feat.T, y_train).get_support(indices = True)) #indices = state_saver("Selecting best features training set", "indices", force_redo = FORCE_REDO, save_state = SAVE_STATE, # fnc = lambda: get_best_anova_features(X_train_feat, y_train)) #indices = benchmark_function("Selecting best features (manual)", lambda: get_best_anova_features(X_train_feat, y_train)) #if __DEBUG: # print("indices") # print(indices.shape) # print(indices[IDX_INSPECT: IDX_INSPECT + IDX_INSPECT_OFFSET]) # assert indices.shape[0] == indices_new.shape[0], f"Indices length not equal : {indices.shape} != {indices_new.shape}" # assert (eq := indices == indices_new).all(), f"Indices not equal : {eq.sum() / indices.shape[0]}" # X_train_feat, X_test_feat = X_train_feat[indices], X_test_feat[indices] X_train_feat_argsort = state_saver(f"Precalculating training set argsort ({label})", f"X_train_feat_argsort_{label}", lambda: argsort(X_train_feat), FORCE_REDO, SAVE_STATE) if __DEBUG: print("X_train_feat_argsort") print(X_train_feat_argsort.shape) print(X_train_feat_argsort[IDX_INSPECT, : IDX_INSPECT_OFFSET]) benchmark_function("Arg unit test", lambda: unit_test_argsort_2d(X_train_feat, X_train_feat_argsort)) X_test_feat_argsort = state_saver(f"Precalculating testing set argsort ({label})", f"X_test_feat_argsort_{label}", lambda: argsort(X_test_feat), FORCE_REDO, SAVE_STATE) if __DEBUG: print("X_test_feat_argsort") print(X_test_feat_argsort.shape) print(X_test_feat_argsort[IDX_INSPECT, : IDX_INSPECT_OFFSET]) benchmark_function("Arg unit test", lambda: unit_test_argsort_2d(X_test_feat, X_test_feat_argsort)) return X_train_feat, X_train_feat_argsort, y_train, X_test_feat, y_test def train(X_train_feat: np.ndarray, X_train_feat_argsort: np.ndarray, y_train: np.ndarray) -> None: """Train the weak classifiers. Args: X_train (np.ndarray): Training images. X_test (np.ndarray): Testing Images. y_train (np.ndarray): Training labels. """ print(f"\n| {'Training':<49} | {'Time spent (ns)':<18} | {'Formatted time spent':<29} |\n|{'-'*51}|{'-'*20}|{'-'*31}|") for T in TS: alphas, final_classifiers = state_saver(f"ViolaJones T = {T:<3} ({label})", [f"alphas_{T}_{label}", f"final_classifiers_{T}_{label}"], lambda: train_viola_jones(T, X_train_feat, X_train_feat_argsort, y_train), FORCE_REDO, SAVE_STATE, MODEL_DIR) if __DEBUG: print("alphas") print(alphas) print("final_classifiers") print(final_classifiers) def testing_and_evaluating(X_train_feat: np.ndarray, y_train: np.ndarray, X_test_feat: np.ndarray, y_test: np.ndarray) -> None: """Benchmark the trained classifiers on the training and testing sets. Args: X_train_feat (np.ndarray): Training features. y_train (np.ndarray): Training labels. X_test_feat (np.ndarray): Testing features. y_test (np.ndarray): Testing labels. """ print(f"\n| {'Testing':<26} | Time spent (ns) (E) | {'Formatted time spent (E)':<29}", end = " | ") print(f"Time spent (ns) (T) | {'Formatted time spent (T)':<29} |") print(f"|{'-'*28}|{'-'*21}|{'-'*31}|{'-'*21}|{'-'*31}|") perfs = [] for T in TS: (alphas, final_classifiers) = picke_multi_loader([f"alphas_{T}_{label}", f"final_classifiers_{T}_{label}"]) s = perf_counter_ns() y_pred_train = classify_viola_jones(alphas, final_classifiers, X_train_feat) t_pred_train = perf_counter_ns() - s e_acc = accuracy_score(y_train, y_pred_train) e_f1 = f1_score(y_train, y_pred_train) (_, e_FP), (e_FN, _) = confusion_matrix(y_train, y_pred_train) s = perf_counter_ns() y_pred_test = classify_viola_jones(alphas, final_classifiers, X_test_feat) t_pred_test = perf_counter_ns() - s t_acc = accuracy_score(y_test, y_pred_test) t_f1 = f1_score(y_test, y_pred_test) (_, t_FP), (t_FN, _) = confusion_matrix(y_test, y_pred_test) perfs.append((e_acc, e_f1, e_FN, e_FP, t_acc, t_f1, t_FN, t_FP)) print(f"| {'ViolaJones T = ' + str(T):<19} {'(' + label + ')':<6}", end = " | ") print(f"{t_pred_train:>19,} | {format_time_ns(t_pred_train):<29}", end = " | ") print(f"{t_pred_test:>19,} | {format_time_ns(t_pred_test):<29} |") print(f"\n| {'Evaluating':<19} | ACC (E) | F1 (E) | FN (E) | FP (E) | ACC (T) | F1 (T) | FN (T) | FP (T) | ") print(f"|{'-'*21}|{'-'*9}|{'-'*8}|{'-'*8}|{'-'*8}|{'-'*9}|{'-'*8}|{'-'*8}|{'-'*8}|") for T, (e_acc, e_f1, e_FN, e_FP, t_acc, t_f1, t_FN, t_FP) in zip(TS, perfs): print(f"| {'ViolaJones T = ' + str(T):<19} | {e_acc:>7.2%} | {e_f1:>6.2f} | {e_FN:>6,} | {e_FP:>6,}", end = " | ") print(f"{t_acc:>7.2%} | {t_f1:>6.2f} | {t_FN:>6,} | {t_FP:>6,} |") def main() -> None: print(f"| {'Unit testing':<49} | {'Time spent (ns)':<18} | {'Formatted time spent':<29} |") print(f"|{'-'*51}|{'-'*20}|{'-'*31}|") benchmark_function("Testing format_time_ns", format_time_ns_test) print() X_train_feat, X_train_feat_argsort, y_train, X_test_feat, y_test = preprocessing() train(X_train_feat, X_train_feat_argsort, y_train) # X_train_feat, X_test_feat = picke_multi_loader([f"X_train_feat_{label}", f"X_test_feat_{label}"], OUT_DIR) # indices = picke_multi_loader(["indices"], OUT_DIR)[0] # X_train_feat, X_test_feat = X_train_feat[indices], X_test_feat[indices] testing_and_evaluating(X_train_feat, y_train, X_test_feat, y_test) unit_test(TS) if __name__ == "__main__": main()