483 lines
20 KiB
Plaintext
483 lines
20 KiB
Plaintext
#include <iostream>
|
|
#include "data.hpp"
|
|
#include "toolbox.hpp"
|
|
#include "ViolaJones.hpp"
|
|
#include "config.hpp"
|
|
|
|
static __global__ void __test_working_kernel__(const np::Array<size_t> d_x, np::Array<size_t> d_y, const size_t length) {
|
|
const size_t i = blockIdx.x * blockDim.x + threadIdx.x;
|
|
if (i < length)
|
|
d_y[i] = d_x[i] * i;
|
|
}
|
|
|
|
void test_working(const size_t& length) noexcept {
|
|
const size_t size = length * sizeof(size_t);
|
|
|
|
#if __DEBUG
|
|
print("Estimating memory footprint at : " + format_byte_size(2 * size));
|
|
#endif
|
|
|
|
np::Array<size_t> x = np::empty<size_t>({ length }), y = np::empty<size_t>({ length });
|
|
size_t i;
|
|
for (i = 0; i < length; ++i)
|
|
x[i] = i;
|
|
|
|
np::Array<size_t> d_x = copyToDevice<size_t>("x", x), d_y = copyToDevice<size_t>("y", y);
|
|
|
|
const size_t dimX = static_cast<size_t>(std::ceil(static_cast<float64_t>(length) / static_cast<float64_t>(NB_THREADS)));
|
|
const dim3 dimGrid(dimX);
|
|
constexpr const dim3 dimBlock(NB_THREADS);
|
|
__test_working_kernel__<<<dimGrid, dimBlock>>>(d_x, d_y, length);
|
|
_print_cuda_error_("synchronize", cudaDeviceSynchronize());
|
|
_print_cuda_error_("memcpy d_y", cudaMemcpy(y.data, d_y.data, size, cudaMemcpyDeviceToHost));
|
|
|
|
size_t ne = 0;
|
|
for (i = 0; i < length; ++i)
|
|
if (y[i] != x[i] * i)
|
|
++ne;
|
|
|
|
if (ne != 0)
|
|
fprintf(stderr, "Invalid result : %lu/%lu <=> %f%%\n", ne, length, static_cast<float64_t>(ne) / static_cast<float64_t>(length));
|
|
|
|
cudaFree("d_x", d_x);
|
|
cudaFree("d_y", d_y);
|
|
}
|
|
|
|
static __global__ void __test_working_kernel_2d__(const np::Array<size_t> d_x, np::Array<size_t> d_y, const size_t length) {
|
|
const size_t idx = threadIdx.x * blockDim.y + threadIdx.y;
|
|
const size_t idy = blockIdx.x * gridDim.y + blockIdx.y;
|
|
const size_t i = idy * NB_THREADS_2D_X * NB_THREADS_2D_Y + idx;
|
|
if (i < length)
|
|
d_y[i] = d_x[i] * i;
|
|
}
|
|
|
|
void test_working_2d(const size_t& N1, const size_t& N2) noexcept {
|
|
const size_t length = N1 * N2;
|
|
const size_t size = length * sizeof(size_t);
|
|
|
|
#if __DEBUG
|
|
print("Estimating memory footprint at : " + format_byte_size(2 * size));
|
|
#endif
|
|
|
|
np::Array<size_t> x = np::empty<size_t>({ length }), y = np::empty<size_t>({ length });
|
|
size_t i;
|
|
for (i = 0; i < length; ++i)
|
|
x[i] = i;
|
|
|
|
np::Array<size_t> d_x = copyToDevice<size_t>("x", x), d_y = copyToDevice<size_t>("y", y);
|
|
|
|
const size_t dimX = static_cast<size_t>(std::ceil(static_cast<float64_t>(N1) / static_cast<float64_t>(NB_THREADS_2D_X)));
|
|
const size_t dimY = static_cast<size_t>(std::ceil(static_cast<float64_t>(N2) / static_cast<float64_t>(NB_THREADS_2D_Y)));
|
|
const dim3 dimGrid(dimX, dimY);
|
|
constexpr const dim3 dimBlock(NB_THREADS_2D_X, NB_THREADS_2D_Y);
|
|
__test_working_kernel_2d__<<<dimGrid, dimBlock>>>(d_x, d_y, length);
|
|
_print_cuda_error_("synchronize", cudaDeviceSynchronize());
|
|
_print_cuda_error_("memcpy d_y", cudaMemcpy(y.data, d_y.data, size, cudaMemcpyDeviceToHost));
|
|
|
|
size_t ne = 0;
|
|
for (i = 0; i < length; ++i)
|
|
if (y[i] != x[i] * i)
|
|
++ne;
|
|
|
|
if (ne != 0)
|
|
fprintf(stderr, "Invalid result : %lu/%lu <=> %f%%\n", ne, length, static_cast<float64_t>(ne) / static_cast<float64_t>(length));
|
|
|
|
cudaFree("d_x", d_x);
|
|
cudaFree("d_y", d_y);
|
|
}
|
|
|
|
static __global__ void __test_working_kernel_3d__(const np::Array<size_t> d_x, np::Array<size_t> d_y, const size_t length) {
|
|
const size_t idx = (threadIdx.x * blockDim.y + threadIdx.y) * blockDim.z + threadIdx.z;
|
|
const size_t idy = (blockIdx.x * gridDim.y + blockIdx.y) * gridDim.z + blockIdx.z;
|
|
const size_t i = idy * NB_THREADS_3D_X * NB_THREADS_3D_Y * NB_THREADS_3D_Z + idx;
|
|
if (i < length)
|
|
d_y[i] = d_x[i] * i;
|
|
}
|
|
|
|
void test_working_3d(const size_t& N1, const size_t& N2, const size_t& N3) noexcept {
|
|
const size_t length = N1 * N2 * N3;
|
|
const size_t size = length * sizeof(size_t);
|
|
|
|
#if __DEBUG
|
|
print("Estimating memory footprint at : " + format_byte_size(2 * size));
|
|
#endif
|
|
|
|
np::Array<size_t> x = np::empty<size_t>({ length }), y = np::empty<size_t>({ length });
|
|
size_t i;
|
|
for (i = 0; i < length; ++i)
|
|
x[i] = i;
|
|
|
|
np::Array<size_t> d_x = copyToDevice<size_t>("x", x), d_y = copyToDevice<size_t>("y", y);
|
|
|
|
const size_t dimX = static_cast<size_t>(std::ceil(static_cast<float64_t>(N1) / static_cast<float64_t>(NB_THREADS_3D_X)));
|
|
const size_t dimY = static_cast<size_t>(std::ceil(static_cast<float64_t>(N2) / static_cast<float64_t>(NB_THREADS_3D_Y)));
|
|
const size_t dimZ = static_cast<size_t>(std::ceil(static_cast<float64_t>(N3) / static_cast<float64_t>(NB_THREADS_3D_Z)));
|
|
const dim3 dimGrid(dimX, dimY, dimZ);
|
|
constexpr const dim3 dimBlock(NB_THREADS_3D_X, NB_THREADS_3D_Y, NB_THREADS_3D_Z);
|
|
__test_working_kernel_3d__<<<dimGrid, dimBlock>>>(d_x, d_y, length);
|
|
_print_cuda_error_("synchronize", cudaDeviceSynchronize());
|
|
_print_cuda_error_("memcpy d_y", cudaMemcpy(y.data, d_y.data, size, cudaMemcpyDeviceToHost));
|
|
|
|
size_t ne = 0;
|
|
for (i = 0; i < length; ++i)
|
|
if (y[i] != x[i] * i)
|
|
++ne;
|
|
|
|
if (ne != 0)
|
|
fprintf(stderr, "Invalid result : %lu/%lu <=> %f%%\n", ne, length, static_cast<float64_t>(ne) / static_cast<float64_t>(length));
|
|
|
|
cudaFree("d_x", d_x);
|
|
cudaFree("d_y", d_y);
|
|
}
|
|
|
|
static np::Array<uint32_t> __scanCPU_3d__(const np::Array<uint32_t>& X) noexcept {
|
|
np::Array<uint32_t> X_scan = np::empty<uint32_t>(X.shape);
|
|
const size_t total = np::prod(X_scan.shape);
|
|
const size_t i_step = np::prod(X_scan.shape, 1);
|
|
for(size_t x = 0; x < total; x += i_step)
|
|
for(size_t y = 0; y < i_step; y += X_scan.shape[2]){
|
|
uint32_t cum = 0;
|
|
for(size_t z = 0; z < X_scan.shape[2]; ++z){
|
|
const size_t idx = x + y + z;
|
|
cum += X[idx];
|
|
X_scan[idx] = cum - X[idx];
|
|
}
|
|
}
|
|
return X_scan;
|
|
}
|
|
|
|
static __global__ void __kernel_scan_3d__(const uint16_t n, const uint16_t j, np::Array<uint32_t> d_inter, np::Array<uint32_t> d_X) {
|
|
const size_t x_coor = blockIdx.x * blockDim.x + threadIdx.x;
|
|
const size_t y_coor = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
__shared__ uint32_t sA[NB_THREADS_2D_X * NB_THREADS_2D_Y];
|
|
sA[threadIdx.x * NB_THREADS_2D_Y + threadIdx.y] = (x_coor < n && y_coor) < j ?
|
|
d_X[blockIdx.z * NB_THREADS_2D_X * NB_THREADS_2D_Y + y_coor * NB_THREADS_2D_Y + x_coor] : 0;
|
|
__syncthreads();
|
|
|
|
size_t k = threadIdx.x;
|
|
for(size_t d = 0; d < M; ++d){
|
|
k *= 2;
|
|
const size_t i1 = k + std::pow(2, d) - 1;
|
|
const size_t i2 = k + std::pow(2, d + 1) - 1;
|
|
if(i2 >= blockDim.x)
|
|
break;
|
|
sA[i2 * NB_THREADS_2D_Y + threadIdx.y] += sA[i1 * NB_THREADS_2D_Y + threadIdx.y];
|
|
}
|
|
__syncthreads();
|
|
|
|
if(threadIdx.x == 0){
|
|
d_inter[blockIdx.z * d_inter.shape[1] * d_inter.shape[2] + y_coor * d_inter.shape[2] + blockIdx.x] =
|
|
sA[(blockDim.x - 1) * NB_THREADS_2D_Y + threadIdx.y];
|
|
sA[(blockDim.x - 1) * NB_THREADS_2D_Y + threadIdx.y] = 0;
|
|
}
|
|
__syncthreads();
|
|
|
|
k = std::pow(2, M + 1) * threadIdx.x;
|
|
for(int64_t d = M - 1; d > -1; --d){
|
|
k = k / 2;
|
|
const size_t i1 = k + std::pow(2, d) - 1;
|
|
const size_t i2 = k + std::pow(2, d + 1) - 1;
|
|
if(i2 >= blockDim.x)
|
|
continue;
|
|
const uint32_t t = sA[i1 * NB_THREADS_2D_Y + threadIdx.y];
|
|
sA[i1 * NB_THREADS_2D_Y + threadIdx.y]= sA[i2 * NB_THREADS_2D_Y + threadIdx.y];
|
|
sA[i2 * NB_THREADS_2D_Y + threadIdx.y] += t;
|
|
}
|
|
__syncthreads();
|
|
|
|
if(x_coor < n && y_coor < j)
|
|
d_X[blockIdx.z * d_X.shape[1] * d_X.shape[2] + y_coor * d_X.shape[2] + x_coor] = sA[threadIdx.x * NB_THREADS_2D_Y + threadIdx.y];
|
|
}
|
|
|
|
static __global__ void __add_3d__(np::Array<uint32_t> d_X, const np::Array<uint32_t> d_s, const uint16_t n, const uint16_t m) {
|
|
const size_t x_coor = blockIdx.x * blockDim.x + threadIdx.x;
|
|
const size_t y_coor = blockIdx.y * blockDim.y + threadIdx.y;
|
|
if(x_coor < n && y_coor < m)
|
|
d_X[blockIdx.z * d_X.shape[1] * d_X.shape[2] + y_coor * d_X.shape[2] + x_coor] += d_s[blockIdx.z * d_X.shape[1] * d_X.shape[2] + y_coor * d_X.shape[2] + blockIdx.x];
|
|
}
|
|
|
|
static np::Array<uint32_t> __scanGPU_3d__(const np::Array<uint32_t>& X) noexcept {
|
|
np::Array<uint32_t> X_scan = np::empty<uint32_t>(X.shape);
|
|
|
|
const size_t k = X.shape[0];
|
|
const size_t height = X.shape[1];
|
|
const size_t n = X.shape[2];
|
|
const size_t n_block_x = static_cast<size_t>(std::ceil(static_cast<float64_t>(X.shape[1]) / static_cast<float64_t>(NB_THREADS_2D_X)));
|
|
const size_t n_block_y = static_cast<size_t>(std::ceil(static_cast<float64_t>(X.shape[2]) / static_cast<float64_t>(NB_THREADS_2D_Y)));
|
|
|
|
np::Array<uint32_t> d_X = copyToDevice<uint32_t>("X", X);
|
|
np::Array<uint32_t> inter = np::empty<uint32_t>({ k, height, n_block_x });
|
|
np::Array<uint32_t> d_inter = copyToDevice<uint32_t>("inter", inter);
|
|
|
|
const dim3 dimGrid(n_block_x, n_block_y, k);
|
|
constexpr const dim3 dimBlock(NB_THREADS_2D_X, NB_THREADS_2D_Y);
|
|
__kernel_scan_3d__<<<dimGrid, dimBlock>>>(n, height, d_inter, d_X);
|
|
_print_cuda_error_("synchronize", cudaDeviceSynchronize());
|
|
|
|
_print_cuda_error_("memcpy d_inter", cudaMemcpy(inter.data, d_inter.data, np::prod(inter.shape) * sizeof(uint32_t), cudaMemcpyDeviceToHost));
|
|
if(n_block_x >= NB_THREADS_2D_X){
|
|
np::Array<uint32_t> sums = __scanGPU_3d__(inter);
|
|
|
|
np::Array<uint32_t> d_s = copyToDevice<uint32_t>("sums", sums);
|
|
__add_3d__<<<dimGrid, dimBlock>>>(d_X, d_s, n, height);
|
|
_print_cuda_error_("synchronize", cudaDeviceSynchronize());
|
|
_print_cuda_error_("memcpy d_X", cudaMemcpy(X_scan.data, d_X.data, np::prod(X_scan.shape) * sizeof(uint32_t), cudaMemcpyDeviceToHost));
|
|
} else {
|
|
np::Array<uint32_t> sums = __scanCPU_3d__(inter);
|
|
_print_cuda_error_("memcpy d_X", cudaMemcpy(X_scan.data, d_X.data, np::prod(X_scan.shape) * sizeof(uint32_t), cudaMemcpyDeviceToHost));
|
|
|
|
for(size_t p = 0; p < k; ++p)
|
|
for(size_t h = 0; h < height; ++h)
|
|
for(size_t i = 1; i < n_block_x; ++i)
|
|
for(size_t j = 0; j < NB_THREADS_2D_X; ++j){
|
|
const size_t idx = i * NB_THREADS_2D_X + j;
|
|
if(idx < n){
|
|
const size_t idy = p * X_scan.shape[1] * X_scan.shape[2] + h * X_scan.shape[2];
|
|
X_scan[idy + idx] += sums[idy + i];
|
|
}
|
|
}
|
|
}
|
|
|
|
return X_scan;
|
|
}
|
|
|
|
static __global__ void __transpose_kernel__(const np::Array<uint32_t> d_X, np::Array<uint32_t> d_Xt) {
|
|
__shared__ uint32_t temp[NB_THREADS_2D_X * NB_THREADS_2D_Y];
|
|
|
|
size_t x = blockIdx.x * blockDim.x + threadIdx.x;
|
|
size_t y = blockIdx.y * blockDim.y + threadIdx.y;
|
|
if(x < d_X.shape[1] && y < d_X.shape[2])
|
|
temp[threadIdx.y * NB_THREADS_2D_Y + threadIdx.x] = d_X[blockIdx.z * d_X.shape[1] * d_X.shape[2] + x * d_X.shape[2] + y];
|
|
|
|
__syncthreads();
|
|
|
|
x = blockIdx.y * blockDim.y + threadIdx.x;
|
|
y = blockIdx.x * blockDim.x + threadIdx.y;
|
|
if(x < d_X.shape[2] && y < d_X.shape[1])
|
|
d_Xt[blockIdx.z * d_Xt.shape[1] * d_Xt.shape[2] + x * d_X.shape[2] + y] = temp[threadIdx.x * NB_THREADS_2D_Y + threadIdx.y];
|
|
}
|
|
|
|
static np::Array<uint32_t> __transpose_3d__(const np::Array<uint32_t>& X) noexcept {
|
|
np::Array<uint32_t> Xt = np::empty<uint32_t>({ X.shape[0], X.shape[2], X.shape[1] });
|
|
|
|
np::Array<uint32_t> d_X = copyToDevice<uint32_t>("X", X);
|
|
np::Array<uint32_t> d_Xt = copyToDevice<uint32_t>("Xt", Xt);
|
|
|
|
const size_t n_block_x = static_cast<size_t>(std::ceil(static_cast<float64_t>(X.shape[1]) / static_cast<float64_t>(NB_THREADS_2D_X)));
|
|
const size_t n_block_y = static_cast<size_t>(std::ceil(static_cast<float64_t>(X.shape[2]) / static_cast<float64_t>(NB_THREADS_2D_Y)));
|
|
const dim3 dimGrid(n_block_x, n_block_y, X.shape[0]);
|
|
constexpr const dim3 dimBlock(NB_THREADS_2D_X, NB_THREADS_2D_Y);
|
|
__transpose_kernel__<<<dimGrid, dimBlock>>>(d_X, d_Xt);
|
|
_print_cuda_error_("synchronize", cudaDeviceSynchronize());
|
|
_print_cuda_error_("memcpy d_Xt", cudaMemcpy(Xt.data, d_Xt.data, np::prod(Xt.shape) * sizeof(uint32_t), cudaMemcpyDeviceToHost));
|
|
cudaFree("X", d_X);
|
|
cudaFree("Xt", d_Xt);
|
|
|
|
return Xt;
|
|
}
|
|
|
|
np::Array<uint32_t> set_integral_image_gpu(const np::Array<uint8_t>& X) noexcept {
|
|
np::Array<uint32_t> X_ii = np::astype<uint32_t>(X);
|
|
X_ii = __scanCPU_3d__(X_ii);
|
|
X_ii = __transpose_3d__(X_ii);
|
|
X_ii = __scanCPU_3d__(X_ii);
|
|
return __transpose_3d__(X_ii);
|
|
}
|
|
|
|
static inline __device__ int16_t __compute_feature__(const np::Array<uint32_t>& d_X_ii, const size_t& j, const int16_t& x, const int16_t& y, const int16_t& w, const int16_t& h) noexcept {
|
|
const size_t _y = y * d_X_ii.shape[1] + x;
|
|
const size_t _yh = _y + h * d_X_ii.shape[1];
|
|
return d_X_ii[j + _yh + w] + d_X_ii[j + _y] - d_X_ii[j + _yh] - d_X_ii[j + _y + w];
|
|
}
|
|
|
|
static __global__ void __apply_feature_kernel__(int32_t* d_X_feat, const np::Array<uint8_t> d_feats, const np::Array<uint32_t> d_X_ii) {
|
|
size_t i = blockIdx.x * blockDim.x + threadIdx.x;
|
|
size_t j = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
if (i >= d_feats.shape[0] || j >= d_X_ii.shape[0])
|
|
return;
|
|
|
|
const size_t k = i * d_X_ii.shape[0] + j;
|
|
i *= np::prod(d_feats.shape, 1);
|
|
j *= np::prod(d_X_ii.shape, 1);
|
|
const int16_t p1 = __compute_feature__(d_X_ii, j, d_feats[i + 0], d_feats[i + 1], d_feats[i + 2], d_feats[i + 3]);
|
|
const int16_t p2 = __compute_feature__(d_X_ii, j, d_feats[i + 4], d_feats[i + 5], d_feats[i + 6], d_feats[i + 7]);
|
|
const int16_t n1 = __compute_feature__(d_X_ii, j, d_feats[i + 8], d_feats[i + 9], d_feats[i + 10], d_feats[i + 11]);
|
|
const int16_t n2 = __compute_feature__(d_X_ii, j, d_feats[i + 12], d_feats[i + 13], d_feats[i + 14], d_feats[i + 15]);
|
|
d_X_feat[k] = static_cast<int32_t>(p1 + p2) - static_cast<int32_t>(n1 + n2);
|
|
}
|
|
|
|
np::Array<int32_t> apply_features_gpu(const np::Array<uint8_t>& feats, const np::Array<uint32_t>& X_ii) noexcept {
|
|
const np::Array<int32_t> X_feat = np::empty<int32_t>({ feats.shape[0], X_ii.shape[0] });
|
|
int32_t* d_X_feat;
|
|
|
|
_print_cuda_error_("malloc d_X_feat", cudaMalloc(&d_X_feat, np::prod(X_feat.shape) * sizeof(int32_t)));
|
|
np::Array<uint32_t> d_X_ii = copyToDevice<uint32_t>("X_ii", X_ii);
|
|
np::Array<uint8_t> d_feats = copyToDevice<uint8_t>("feats", feats);
|
|
|
|
const size_t dimX = static_cast<size_t>(std::ceil(static_cast<float64_t>(feats.shape[0]) / static_cast<float64_t>(NB_THREADS_2D_X)));
|
|
const size_t dimY = static_cast<size_t>(std::ceil(static_cast<float64_t>(X_ii.shape[0]) / static_cast<float64_t>(NB_THREADS_2D_Y)));
|
|
const dim3 dimGrid(dimX, dimY);
|
|
constexpr const dim3 dimBlock(NB_THREADS_2D_X, NB_THREADS_2D_Y);
|
|
__apply_feature_kernel__<<<dimGrid, dimBlock>>>(d_X_feat, d_feats, d_X_ii);
|
|
_print_cuda_error_("synchronize", cudaDeviceSynchronize());
|
|
|
|
_print_cuda_error_("memcpy X_feat", cudaMemcpy(X_feat.data, d_X_feat, np::prod(X_feat.shape) * sizeof(int32_t), cudaMemcpyDeviceToHost));
|
|
|
|
_print_cuda_error_("free d_X_feat", cudaFree(d_X_feat));
|
|
cudaFree("free d_feats", d_feats);
|
|
cudaFree("free d_X_11", d_X_ii);
|
|
|
|
return X_feat;
|
|
}
|
|
|
|
static __global__ void __train_weak_clf_kernel__(np::Array<float64_t> d_classifiers, const np::Array<uint8_t> d_y,
|
|
const np::Array<int32_t> d_X_feat, const np::Array<uint16_t> d_X_feat_argsort,
|
|
const np::Array<float64_t> d_weights, const float64_t total_pos, const float64_t total_neg) {
|
|
|
|
size_t i = blockIdx.x * blockDim.x * blockDim.y * blockDim.z;
|
|
i += threadIdx.x * blockDim.y * blockDim.z;
|
|
i += threadIdx.y * blockDim.z;
|
|
i += threadIdx.z;
|
|
// const size_t i = blockIdx.x * blockDim.x + threadIdx.x;
|
|
if(i >= d_classifiers.shape[0])
|
|
return;
|
|
|
|
size_t pos_seen = 0, neg_seen = 0;
|
|
float64_t pos_weights = 0.0, neg_weights = 0.0;
|
|
float64_t min_error = np::inf, best_threshold = 0.0, best_polarity = 0.0;
|
|
for(size_t j = 0; j < d_X_feat_argsort.shape[1]; ++j) {
|
|
const float64_t error = np::min(neg_weights + total_pos - pos_weights, pos_weights + total_neg - neg_weights);
|
|
if (error < min_error){
|
|
min_error = error;
|
|
best_threshold = d_X_feat[i * d_X_feat.shape[1] + d_X_feat_argsort[i * d_X_feat.shape[1] + j]];
|
|
best_polarity = pos_seen > neg_seen ? 1.0 : -1.0;
|
|
}
|
|
if(d_y[d_X_feat_argsort[i * d_X_feat.shape[1] + j]] == static_cast<uint8_t>(1)){
|
|
++pos_seen;
|
|
pos_weights += d_weights[d_X_feat_argsort[i * d_X_feat.shape[1] + j]];
|
|
} else {
|
|
++neg_seen;
|
|
neg_weights += d_weights[d_X_feat_argsort[i * d_X_feat.shape[1] + j]];
|
|
}
|
|
}
|
|
d_classifiers[i * 2] = best_threshold; d_classifiers[i * 2 + 1] = best_polarity;
|
|
}
|
|
|
|
np::Array<float64_t> train_weak_clf_gpu(const np::Array<int32_t>& X_feat, const np::Array<uint16_t>& X_feat_argsort, const np::Array<uint8_t>& y,
|
|
const np::Array<float64_t>& weights) noexcept {
|
|
float64_t total_pos = 0.0, total_neg = 0.0;
|
|
for(size_t i = 0; i < y.shape[0]; ++i)
|
|
(y[i] == static_cast<uint8_t>(1) ? total_pos : total_neg) += weights[i];
|
|
|
|
np::Array<float64_t> classifiers = np::empty<float64_t>({ X_feat.shape[0], 2});
|
|
|
|
np::Array<float64_t> d_classifiers = copyToDevice<float64_t>("classifiers", classifiers);
|
|
np::Array<int32_t> d_X_feat = copyToDevice<int32_t>("X_feat", X_feat);
|
|
np::Array<uint16_t> d_X_feat_argsort = copyToDevice<uint16_t>("X_feat_argsort", X_feat_argsort);
|
|
np::Array<float64_t> d_weights = copyToDevice<float64_t>("weights", weights);
|
|
np::Array<uint8_t> d_y = copyToDevice<uint8_t>("y", y);
|
|
|
|
const size_t n_blocks = static_cast<size_t>(std::ceil(static_cast<float64_t>(X_feat.shape[0]) / static_cast<float64_t>(NB_THREADS_3D_X * NB_THREADS_3D_Y * NB_THREADS_3D_Z)));
|
|
constexpr const dim3 dimBlock(NB_THREADS_3D_X, NB_THREADS_3D_Y, NB_THREADS_3D_Z);
|
|
// const size_t n_blocks = static_cast<size_t>(std::ceil(static_cast<float64_t>(X_feat.shape[0]) / static_cast<float64_t>(NB_THREADS)));
|
|
// constexpr const dim3 dimBlock(NB_THREADS);
|
|
__train_weak_clf_kernel__<<<n_blocks, dimBlock>>>(d_classifiers, d_y, d_X_feat, d_X_feat_argsort, d_weights, total_pos, total_neg);
|
|
_print_cuda_error_("synchronize", cudaDeviceSynchronize());
|
|
|
|
_print_cuda_error_("memcpy classifiers", cudaMemcpy(classifiers.data, d_classifiers.data, np::prod(classifiers.shape) * sizeof(float64_t), cudaMemcpyDeviceToHost));
|
|
|
|
cudaFree("free d_classifiers", d_classifiers);
|
|
cudaFree("free d_X_feat", d_X_feat);
|
|
cudaFree("free d_X_feat_argsort", d_X_feat_argsort);
|
|
cudaFree("free d_weights", d_weights);
|
|
cudaFree("free d_y", d_y);
|
|
|
|
return classifiers;
|
|
}
|
|
|
|
template<typename T>
|
|
__device__ inline static int32_t as_partition_gpu(const T* a, uint16_t* indices, const size_t l, const size_t h) noexcept {
|
|
int32_t i = l - 1;
|
|
for (int32_t j = l; j <= h; ++j)
|
|
if (a[indices[j]] < a[indices[h]])
|
|
swap(&indices[++i], &indices[j]);
|
|
swap(&indices[++i], &indices[h]);
|
|
return i;
|
|
}
|
|
|
|
template<typename T>
|
|
__device__ void argsort_gpu(const T* a, uint16_t* indices, const size_t l, const size_t h) noexcept {
|
|
const size_t total = h - l + 1;
|
|
|
|
//int32_t* stack = new int32_t[total]{l, h};
|
|
//int32_t stack[total];
|
|
int32_t stack[6977];
|
|
//int32_t stack[1<<16];
|
|
stack[0] = l;
|
|
stack[1] = h;
|
|
|
|
size_t top = 1, low = l, high = h;
|
|
|
|
while (top <= total) {
|
|
high = stack[top--];
|
|
low = stack[top--];
|
|
if(low >= high)
|
|
break;
|
|
|
|
const int32_t p = as_partition_gpu(a, indices, low, high);
|
|
|
|
if (p - 1 > low && p - 1 < total) {
|
|
stack[++top] = low;
|
|
stack[++top] = p - 1;
|
|
}
|
|
|
|
if (p + 1 < high) {
|
|
stack[++top] = p + 1;
|
|
stack[++top] = high;
|
|
}
|
|
}
|
|
//delete[] stack;
|
|
}
|
|
|
|
template<typename T>
|
|
__global__ void argsort_bounded_gpu(const np::Array<T> a, uint16_t* indices){
|
|
const size_t idx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
if (idx >= a.shape[0])
|
|
return;
|
|
|
|
for(size_t y = 0; y < a.shape[1]; ++y) indices[idx * a.shape[1] + y] = y;
|
|
argsort_gpu(&a[idx * a.shape[1]], &indices[idx * a.shape[1]], 0, a.shape[1] - 1);
|
|
}
|
|
|
|
np::Array<uint16_t> argsort_2d_gpu(const np::Array<int32_t>& X_feat) noexcept {
|
|
const np::Array<uint16_t> indices = np::empty<uint16_t>(X_feat.shape);
|
|
|
|
uint16_t* d_indices;
|
|
const size_t indices_size = np::prod(indices.shape) * sizeof(uint16_t);
|
|
|
|
np::Array<int32_t> d_X_feat = copyToDevice<int32_t>("X_feat", X_feat);
|
|
_print_cuda_error_("malloc d_indices", cudaMalloc(&d_indices, indices_size));
|
|
|
|
const size_t dimGrid = static_cast<size_t>(std::ceil(static_cast<float64_t>(X_feat.shape[0]) / static_cast<float64_t>(NB_THREADS)));
|
|
const dim3 dimBlock(NB_THREADS);
|
|
argsort_bounded_gpu<<<dimGrid, dimBlock>>>(d_X_feat, d_indices);
|
|
_print_cuda_error_("synchronize", cudaDeviceSynchronize());
|
|
|
|
_print_cuda_error_("memcpy d_indices", cudaMemcpy(indices.data, d_indices, indices_size, cudaMemcpyDeviceToHost));
|
|
|
|
cudaFree("free d_X_feat", d_X_feat);
|
|
_print_cuda_error_("free d_indices", cudaFree(d_indices));
|
|
|
|
return indices;
|
|
}
|
|
|
|
__host__ __device__
|
|
size_t np::prod(const np::Shape& shape, const size_t& offset) noexcept {
|
|
size_t result = shape[offset];
|
|
for(size_t i = 1 + offset; i < shape.length; ++i)
|
|
result *= shape[i];
|
|
return result;
|
|
}
|