192 lines
5.6 KiB
Python
192 lines
5.6 KiB
Python
from config import COMPILE_WITH_C
|
|
from typing import Iterable
|
|
from numba import int32, float64
|
|
import numpy as np
|
|
|
|
if COMPILE_WITH_C:
|
|
from numba import njit
|
|
@njit
|
|
def tqdm_iter(iter: Iterable, _: str):
|
|
return iter
|
|
else:
|
|
from decorators import njit, tqdm_iter
|
|
import sys
|
|
sys.setrecursionlimit(10000)
|
|
|
|
@njit('uint32[:, :, :](uint8[:, :, :])')
|
|
def set_integral_image(X: np.ndarray) -> np.ndarray:
|
|
"""Transform the input images in integrated images (CPU version).
|
|
|
|
Args:
|
|
X (np.ndarray): Dataset of images
|
|
|
|
Returns:
|
|
np.ndarray: Dataset of integrated images
|
|
"""
|
|
X_ii = np.empty_like(X, dtype = np.uint32)
|
|
for i, Xi in enumerate(tqdm_iter(X, "Applying integral image")):
|
|
ii = np.zeros_like(Xi, dtype = np.uint32)
|
|
for y in range(1, Xi.shape[0]):
|
|
s = 0
|
|
for x in range(Xi.shape[1] - 1):
|
|
s += Xi[y - 1, x]
|
|
ii[y, x + 1] = s + ii[y - 1, x + 1]
|
|
X_ii[i] = ii
|
|
return X_ii
|
|
|
|
@njit('int32[:, :](int32[:, :], uint16[:, :], uint8[:], float64[:])')
|
|
def train_weak_clf(X_feat: np.ndarray, X_feat_argsort: np.ndarray, y: np.ndarray, weights: np.ndarray) -> np.ndarray:
|
|
"""Train the weak classifiers on a given dataset (CPU version).
|
|
|
|
Args:
|
|
X_feat (np.ndarray): Feature images dataset
|
|
X_feat_argsort (np.ndarray): Sorted indexes of the integrated features
|
|
y (np.ndarray): Labels of the features
|
|
weights (np.ndarray): Weights of the features
|
|
|
|
Returns:
|
|
np.ndarray: Trained weak classifiers
|
|
"""
|
|
total_pos, total_neg = weights[y == 1].sum(), weights[y == 0].sum()
|
|
|
|
classifiers = np.empty((X_feat.shape[0], 2), dtype = np.int32)
|
|
for i, feature in enumerate(tqdm_iter(X_feat, "Training weak classifiers")):
|
|
pos_seen, neg_seen = 0, 0
|
|
pos_weights, neg_weights = 0, 0
|
|
min_error, best_threshold, best_polarity = float64(np.inf), 0, 0
|
|
for j in X_feat_argsort[i]:
|
|
error = min(neg_weights + total_pos - pos_weights, pos_weights + total_neg - neg_weights)
|
|
if error < min_error:
|
|
min_error = error
|
|
best_threshold = feature[j]
|
|
best_polarity = 1 if pos_seen > neg_seen else -1
|
|
|
|
if y[j] == 1:
|
|
pos_seen += 1
|
|
pos_weights += weights[j]
|
|
else:
|
|
neg_seen += 1
|
|
neg_weights += weights[j]
|
|
|
|
classifiers[i] = (best_threshold, best_polarity)
|
|
return classifiers
|
|
|
|
@njit('uint32(uint32[:, :], int16, int16, int16, int16)')
|
|
def __compute_feature__(ii: np.ndarray, x: int, y: int, w: int, h: int) -> int:
|
|
"""Compute a feature on an integrated image at a specific coordinate (CPU version).
|
|
|
|
Args:
|
|
ii (np.ndarray): Integrated image
|
|
x (int): X coordinate
|
|
y (int): Y coordinate
|
|
w (int): width of the feature
|
|
h (int): height of the feature
|
|
|
|
Returns:
|
|
int: Computed feature
|
|
"""
|
|
return ii[y + h, x + w] + ii[y, x] - ii[y + h, x] - ii[y, x + w]
|
|
|
|
@njit('int32[:, :](uint8[:, :, :, :], uint32[:, :, :])')
|
|
def apply_features(feats: np.ndarray, X_ii: np.ndarray) -> np.ndarray:
|
|
"""Apply the features on a integrated image dataset (CPU version).
|
|
|
|
Args:
|
|
feats (np.ndarray): Features to apply
|
|
X_ii (np.ndarray): Integrated image dataset
|
|
|
|
Returns:
|
|
np.ndarray: Applied features
|
|
"""
|
|
X_feat = np.empty((feats.shape[0], X_ii.shape[0]), dtype = np.int32)
|
|
|
|
for i, (p, n) in enumerate(tqdm_iter(feats, "Applying features")):
|
|
for j, x_i in enumerate(X_ii):
|
|
p_x, p_y, p_w, p_h = p[0]
|
|
p1_x, p1_y, p1_w, p1_h = p[1]
|
|
n_x, n_y, n_w, n_h = n[0]
|
|
n1_x, n1_y, n1_w, n1_h = n[1]
|
|
p1 = __compute_feature__(x_i, p_x, p_y, p_w, p_h) + __compute_feature__(x_i, p1_x, p1_y, p1_w, p1_h)
|
|
n1 = __compute_feature__(x_i, n_x, n_y, n_w, n_h) + __compute_feature__(x_i, n1_x, n1_y, n1_w, n1_h)
|
|
X_feat[i, j] = int32(p1) - int32(n1)
|
|
|
|
return X_feat
|
|
|
|
@njit('int32(int32[:], uint16[:], int32, int32)')
|
|
def _as_partition_(d_a: np.ndarray, d_indices: np.ndarray, low: int, high: int) -> int:
|
|
"""Partition of the argsort algorithm.
|
|
|
|
Args:
|
|
d_a (np.ndarray): Array on device to sort
|
|
d_indices (np.ndarray): Array of indices on device to write to
|
|
low (int): lower bound to sort
|
|
high (int): higher bound to sort
|
|
|
|
Returns:
|
|
int: Last index sorted
|
|
"""
|
|
i, j = low - 1, low
|
|
for j in range(low, high + 1):
|
|
if d_a[d_indices[j]] < d_a[d_indices[high]]:
|
|
i += 1
|
|
d_indices[i], d_indices[j] = d_indices[j], d_indices[i]
|
|
|
|
i += 1
|
|
d_indices[i], d_indices[j] = d_indices[j], d_indices[i]
|
|
return i
|
|
|
|
@njit('void(int32[:], uint16[:], int32, int32)')
|
|
def argsort_bounded(d_a: np.ndarray, d_indices: np.ndarray, low: int, high: int) -> None:
|
|
"""Perform an indirect sort of a given array within a given bound.
|
|
|
|
Args:
|
|
d_a (np.ndarray): Array to sort
|
|
d_indices (np.ndarray): Array of indices to write to
|
|
low (int): lower bound to sort
|
|
high (int): higher bound to sort
|
|
"""
|
|
total = high - low + 1
|
|
stack = np.empty((total,), dtype = np.int32)
|
|
stack[0] = low
|
|
stack[1] = high
|
|
top = 1
|
|
|
|
while top >= 0:
|
|
high = stack[top]
|
|
top -= 1
|
|
low = stack[top]
|
|
top -= 1
|
|
|
|
if low >= high:
|
|
break
|
|
|
|
p = _as_partition_(d_a, d_indices, low, high)
|
|
|
|
if p - 1 > low:
|
|
top += 1
|
|
stack[top] = low
|
|
top += 1
|
|
stack[top] = p - 1
|
|
|
|
if p + 1 < high:
|
|
top += 1
|
|
stack[top] = p + 1
|
|
top += 1
|
|
stack[top] = high
|
|
|
|
@njit('uint16[:, :](int32[:, :])')
|
|
def argsort(X_feat: np.ndarray) -> np.ndarray:
|
|
"""Perform an indirect sort of a given array.
|
|
|
|
Args:
|
|
X_feat (np.ndarray): Array to sort
|
|
|
|
Returns:
|
|
np.ndarray: Array of indices that sort the array
|
|
"""
|
|
indices = np.empty_like(X_feat, dtype = np.uint16)
|
|
indices[:, :] = np.arange(indices.shape[1])
|
|
for i in tqdm_iter(range(X_feat.shape[0]), "argsort"):
|
|
argsort_bounded(X_feat[i], indices[i], 0, X_feat[i].shape[0] - 1)
|
|
return indices
|