ViolaJones/python/ViolaJones.py
2024-04-28 22:35:42 +02:00

183 lines
6.7 KiB
Python

from typing import Tuple, Iterable
from tqdm import tqdm
import numpy as np
import config
if config.GPU_BOOSTED:
from ViolaJonesGPU import train_weak_clf
else:
from ViolaJonesCPU import train_weak_clf
if config.COMPILE_WITH_C:
from numba import njit
@njit
def tqdm_iter(iter: Iterable, _: str):
return iter
else:
from decorators import njit, tqdm_iter
@njit('uint8[:, :, :, :](uint16, uint16)')
def build_features(width: int, height: int) -> np.ndarray:
"""Initialize the features based on the input shape.
Args:
shape (Tuple[int, int]): Shape of the image (Width, Height)
Returns:
np.ndarray: The initialized features
"""
feats = []
empty = (0, 0, 0, 0)
for w in range(1, width + 1):
for h in range(1, height + 1):
for i in range(width - w):
for j in range(height - h):
# 2 rectangle features
immediate = (i, j, w, h)
right = (i + w, j, w, h)
if i + 2 * w < width: # Horizontally Adjacent
feats.append(([right, empty], [immediate, empty]))
bottom = (i, j + h, w, h)
if j + 2 * h < height: # Vertically Adjacent
feats.append((([immediate, empty], [bottom, empty])))
right_2 = (i + 2 * w, j, w, h)
# 3 rectangle features
if i + 3 * w < width: # Horizontally Adjacent
feats.append((([right, empty], [right_2, immediate])))
bottom_2 = (i, j + 2 * h, w, h)
if j + 3 * h < height: # Vertically Adjacent
feats.append((([bottom, empty], [bottom_2, immediate])))
# 4 rectangle features
bottom_right = (i + w, j + h, w, h)
if i + 2 * w < width and j + 2 * h < height:
feats.append((([right, bottom], [immediate, bottom_right])))
return np.asarray(feats, dtype = np.uint8)
@njit('float64[:](uint8[:])')
def init_weights(y_train: np.ndarray) -> np.ndarray:
"""Initialize the weights of the weak classifiers based on the training labels.
Args:
y_train (np.ndarray): Training labels
Returns:
np.ndarray: The initialized weights
"""
weights = np.empty_like(y_train, dtype = np.float64)
t = y_train.sum()
weights[y_train == 0] = 1.0 / (2 * t)
weights[y_train == 1] = 1.0 / (2 * (y_train.shape[0] - t))
return weights
@njit('int8[:](int32[:], int32, int32)')
def classify_weak_clf(x_feat_i: np.ndarray, threshold: int, polarity: int) -> np.ndarray:
"""Classify the integrated features based on polarity and threshold.
Args:
x_feat_i (np.ndarray): Integrated features
threshold (int): Trained threshold
polarity (int): Trained polarity
Returns:
np.ndarray: Classified features
"""
res = np.zeros_like(x_feat_i, dtype = np.int8)
res[polarity * x_feat_i < polarity * threshold] = 1
return res
@njit('uint8[:](float64[:], int32[:, :], int32[:, :])')
def classify_viola_jones(alphas: np.ndarray, classifiers: np.ndarray, X_feat: np.ndarray) -> np.ndarray:
"""Classify the trained classifiers on the given features.
Args:
alphas (np.ndarray): Trained alphas
classifiers (np.ndarray): Trained classifiers
X_feat (np.ndarray): Integrated features
Returns:
np.ndarray: Classification results
"""
total = np.zeros(X_feat.shape[1], dtype = np.float64)
for i, alpha in enumerate(tqdm_iter(alphas, "Classifying ViolaJones")):
(j, threshold, polarity) = classifiers[i]
total += alpha * classify_weak_clf(X_feat[j], threshold, polarity)
y_pred = np.zeros(X_feat.shape[1], dtype = np.uint8)
y_pred[total >= 0.5 * np.sum(alphas)] = 1
return y_pred
@njit('Tuple((int32, float64, float64[:]))(int32[:, :], float64[:], int32[:, :], uint8[:])')
def select_best(classifiers: np.ndarray, weights: np.ndarray, X_feat: np.ndarray, y: np.ndarray) -> Tuple[int, float, np.ndarray]:
"""Select the best classifier given their predictions.
Args:
classifiers (np.ndarray): The weak classifiers
weights (np.ndarray): Trained weights of each classifiers
X_feat (np.ndarray): Integrated features
y (np.ndarray): Features labels
Returns:
Tuple[int, float, np.ndarray]: Index of the best classifier, the best error and the best accuracy
"""
best_clf, best_error, best_accuracy = 0, np.inf, np.empty(X_feat.shape[1], dtype = np.float64)
for j, (threshold, polarity) in enumerate(tqdm_iter(classifiers, "Selecting best classifiers")):
accuracy = np.abs(classify_weak_clf(X_feat[j], threshold, polarity) - y).astype(np.float64)
error = np.mean(weights * accuracy)
if error < best_error:
best_clf, best_error, best_accuracy = j, error, accuracy
return best_clf, best_error, best_accuracy
#@njit('Tuple((float64[:], int32[:, :]))(uint16, int32[:, :], uint16[:, :], uint8[:])')
def train_viola_jones(T: int, X_feat: np.ndarray, X_feat_argsort: np.ndarray, y: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Train the weak classifiers.
Args:
T (int): Number of weak classifiers
X_feat (np.ndarray): Integrated features
X_feat_argsort (np.ndarray): Sorted indexes of the integrated features
y (np.ndarray): Features labels
Returns:
Tuple[np.ndarray, np.ndarray]: List of trained alphas and the list of the final classifiers
"""
weights = init_weights(y)
alphas, final_classifier = np.empty(T, dtype = np.float64), np.empty((T, 3), dtype = np.int32)
#for t in tqdm_iter(range(T), "Training ViolaJones"):
for t in tqdm(range(T), desc = "Training ViolaJones", leave = False):
weights /= weights.sum()
classifiers = train_weak_clf(X_feat, X_feat_argsort, y, weights)
clf, error, accuracy = select_best(classifiers, weights, X_feat, y)
beta = error / (1.0 - error)
weights *= beta ** (1.0 - accuracy)
alphas[t] = np.log(1.0 / beta)
final_classifier[t] = (clf, classifiers[clf][0], classifiers[clf][1])
return alphas, final_classifier
#@njit
#def get_best_anova_features(X: np.ndarray, y: np.ndarray) -> np.ndarray:
# #SelectPercentile(f_classif, percentile = 10).fit(X, y).get_support(indices = True)
# classes = [X.T[y == 0].astype(np.float64), X.T[y == 1].astype(np.float64)]
# n_samples_per_class = np.asarray([classes[0].shape[0], classes[1].shape[0]])
# n_samples = classes[0].shape[0] + classes[1].shape[0]
# ss_all_data = (classes[0] ** 2).sum(axis = 0) + (classes[1] ** 2).sum(axis = 0)
# sums_classes = [np.asarray(classes[0].sum(axis = 0)), np.asarray(classes[1].sum(axis = 0))]
# sq_of_sums_all_data = (sums_classes[0] + sums_classes[1]) ** 2
# sq_of_sums_args = [sums_classes[0] ** 2, sums_classes[1] ** 2]
# ss_tot = ss_all_data - sq_of_sums_all_data / n_samples
#
# sqd_sum_bw_n = sq_of_sums_args[0] / n_samples_per_class[0] + \
# sq_of_sums_args[1] / n_samples_per_class[1] - sq_of_sums_all_data / n_samples
# ss_wn = ss_tot - sqd_sum_bw_n
# df_wn = n_samples - 2
# msw = ss_wn / df_wn
# f_values = sqd_sum_bw_n / msw
# return np.sort(np.argsort(f_values)[::-1][: int(np.ceil(X.shape[0] / 10.0))])