ViolaJones/cpp/ViolaJones.hpp
2024-04-28 22:11:33 +02:00

327 lines
12 KiB
C++

#pragma once
#include <filesystem>
#include "data.hpp"
#include "toolbox.hpp"
/**
* @brief Test if a array from a CPU computation is equal to a GPU computation equivalent.
*
* @tparam T Inner type of the arrays to test
* @param cpu CPU Array
* @param gpu GPU Array
* @return Whether the test was succesful
*/
template <typename T>
bool unit_test_cpu_vs_gpu(const np::Array<T>& cpu, const np::Array<T>& gpu) noexcept {
if (cpu.shape != gpu.shape) {
#if __DEBUG
fprintf(stderr, "Unequal shape !\n");
#endif
return false;
}
size_t eq = 0;
const size_t length = np::prod(cpu.shape);
for (size_t i = 0; i < length; ++i)
if (cpu[i] == gpu[i])
++eq;
#if __DEBUG
if (eq != length)
printf("Incorrect results, Number of equalities : %s/%s <=> %.2f%% !\n", thousand_sep(eq).c_str(), thousand_sep(length).c_str(),
static_cast<float64_t>(eq) / static_cast<float64_t>(length) * 100.0);
#endif
return eq == length;
}
/**
* @brief Test if a given 2D array of indices sort a given 2D array
*
* @tparam T Inner type of the array to test
* @param a 2D Array of data
* @param indices 2D Indices that sort the array
* @return Whether the test was successful
*/
template <typename T>
bool unit_test_argsort_2d(const np::Array<T>& a, const np::Array<uint16_t>& indices) noexcept {
if (a.shape != indices.shape) {
#if __DEBUG
fprintf(stderr, "Unequal shape !\n");
#endif
return false;
}
size_t correct = a.shape[0]; // First elements are always correctly sorted
const size_t total = np::prod(a.shape);
for(size_t i = 0; i < total; i += a.shape[1])
for(size_t j = 0; j < a.shape[1] - 1; ++j){
const size_t k = i + j;
if(a[i + indices[k]] <= a[i + indices[k + 1]])
++correct;
}
#if __DEBUG
if (correct != total)
printf("Incorrect results, Number of equalities : %s/%s <=> %.2f%% !\n", thousand_sep(correct).c_str(), thousand_sep(total).c_str(),
static_cast<float64_t>(correct) / static_cast<float64_t>(total) * 100.0);
#endif
return correct == total;
}
/**
* @brief Benchmark a function and display the result in stdout.
*
* @tparam T Resulting type of the function to benchmark
* @tparam F Signature of the function to call
* @tparam Args Arguments variadic of the function to call
* @param step_name Name of the function to log
* @param column_width Width of the column to print during logging
* @param fnc Function to benchmark
* @param args Arguments to pass to the function to call
* @return Result of the benchmarked function
*/
template <typename T, typename F, typename... Args>
T benchmark_function(const char* const step_name, const int32_t& column_width, const F& fnc, Args &&...args) noexcept {
#if __DEBUG == false
fprintf(stderr, "%s...\r", step_name);
fflush(stderr); // manual flush is mandatory, otherwise it will not be shown immediately because the output is buffered
#endif
const std::chrono::system_clock::time_point start = perf_counter_ns();
const T res = fnc(std::forward<Args>(args)...);
const long long time_spent = duration_ns(perf_counter_ns() - start);
formatted_row<3>({ column_width, -18, 29 }, { step_name, thousand_sep(time_spent).c_str(), format_time_ns(time_spent).c_str() });
return res;
}
/**
* @brief Benchmark a function and display the result in stdout.
*
* @tparam F Signature of the function to call
* @tparam Args Arguments variadic of the function to call
* @param step_name Name of the function to log
* @param column_width Width of the column to print during logging
* @param fnc Function to benchmark
* @param args Arguments to pass to the function to call
*/
template <typename F, typename... Args>
void benchmark_function_void(const char* const step_name, const int32_t& column_width, const F& fnc, Args &&...args) noexcept {
#if __DEBUG == false
fprintf(stderr, "%s...\r", step_name);
fflush(stderr); // manual flush is mandatory, otherwise it will not be shown immediately because the output is buffered
#endif
const std::chrono::system_clock::time_point start = perf_counter_ns();
fnc(std::forward<Args>(args)...);
const long long time_spent = duration_ns(perf_counter_ns() - start);
formatted_row<3>({ column_width, -18, 29 }, { step_name, thousand_sep(time_spent).c_str(), format_time_ns(time_spent).c_str() });
}
/**
* @brief Either execute a function then save the result or load the already cached result.
*
* @tparam T Inner type of the resulting array
* @tparam F Signature of the function to call
* @tparam Args Arguments variadic of the function to call
* @param step_name Name of the function to log
* @param column_width Width of the column to print during logging
* @param filename Name of the filename where the result is saved
* @param force_redo Recall the function even if the result is already saved, ignored if result is not cached
* @param save_state Whether the computed result will be saved or not, ignore if loading already cached result
* @param out_dir Path of the directory to save the result
* @param fnc Function to call
* @param args Arguments to pass to the function to call
* @return The result of the called function
*/
template <typename T, typename F, typename... Args>
np::Array<T> state_saver(const char* const step_name, const int32_t& column_width, const char* const filename, const bool& force_redo, const bool& save_state, const char* const out_dir, const F& fnc, Args &&...args) noexcept {
char filepath[BUFFER_SIZE] = { 0 };
snprintf(filepath, BUFFER_SIZE, "%s/%s.bin", out_dir, filename);
np::Array<T> bin;
if (!std::filesystem::exists(filepath) || force_redo) {
bin = benchmark_function<np::Array<T>>(step_name, column_width, fnc, std::forward<Args>(args)...);
if(save_state){
#if __DEBUG == false
fprintf(stderr, "Saving results of %s\r", step_name);
fflush(stderr);
#endif
save<T>(bin, filepath);
#if __DEBUG == false
fprintf(stderr, "%*c\r", 100, ' '); // Clear previous clear
fflush(stderr);
#endif
}
} else {
#if __DEBUG == false
fprintf(stderr, "Loading results of %s\r", step_name);
fflush(stderr);
#endif
bin = load<T>(filepath);
formatted_row<3>({ column_width, -18, 29 }, { step_name, "None", "loaded saved state" });
}
return bin;
}
/**
* @brief Either execute a function then saves the results or load the already cached result.
*
* @tparam T Inner type of the resulting arrays
* @tparam F Signature of the function to call
* @tparam Args Arguments variadic of the function to call
* @param step_name Name of the function to log
* @param column_width Width of the column to print during logging
* @param filenames List of names of the filenames where the results are save
* @param force_redo Recall the function even if the results are already saved, ignored if results are not cached
* @param save_state Whether the computed results will be saved or not, ignored if loading already cached results
* @param out_dir Path of the directory to save the results
* @param fnc Function to call
* @param args Arguments to pass to the function to call
* @return The results of the called function
*/
template <typename T, size_t N, typename F, typename... Args>
std::array<np::Array<T>, N> state_saver(const char* const step_name, const int32_t& column_width, const std::vector<const char*>& filenames, const bool& force_redo, const bool& save_state, const char* const out_dir, const F& fnc, Args &&...args) noexcept {
char filepath[BUFFER_SIZE] = { 0 };
bool abs = false;
for (const char* const filename : filenames){
snprintf(filepath, BUFFER_SIZE, "%s/%s.bin", out_dir, filename);
if (!std::filesystem::exists(filepath)) {
abs = true;
break;
}
}
std::array<np::Array<T>, N> bin;
if (abs || force_redo) {
bin = benchmark_function<std::array<np::Array<T>, N>>(step_name, column_width, fnc, std::forward<Args>(args)...);
if (save_state){
#if __DEBUG == false
fprintf(stderr, "Saving results of %s\r", step_name);
fflush(stderr);
#endif
size_t i = 0;
for (const char* const filename : filenames){
snprintf(filepath, BUFFER_SIZE, "%s/%s.bin", out_dir, filename);
save<T>(bin[i++], filepath);
}
#if __DEBUG == false
fprintf(stderr, "%*c\r", 100, ' '); // Clear previous print
fflush(stderr);
#endif
}
} else {
#if __DEBUG == false
fprintf(stderr, "Loading results of %s\r", step_name);
fflush(stderr);
#endif
size_t i = 0;
for (const char* const filename : filenames){
snprintf(filepath, BUFFER_SIZE, "%s/%s.bin", out_dir, filename);
bin[i++] = load<T>(filepath);
}
formatted_row<3>({ column_width, -18, 29 }, { step_name, "None", "loaded saved state" });
}
return bin;
}
/**
* @brief Initialize the features based on the input shape.
*
* @param width Width of the image
* @param height Height of the image
* @return The initialized features
*/
np::Array<uint8_t> build_features(const uint16_t&, const uint16_t&) noexcept;
//np::Array<int32_t> select_percentile(const np::Array<uint8_t>&, const np::Array<uint8_t>&) noexcept;
/**
* @brief Classify the trained classifiers on the given features.
*
* @param alphas Trained alphas
* @param classifiers Trained classifiers
* @param X_feat integrated features
* @return Classification results
*/
np::Array<uint8_t> classify_viola_jones(const np::Array<float64_t>&, const np::Array<float64_t>&, const np::Array<int32_t>&) noexcept;
/**
* @brief Initialize the weights of the weak classifiers based on the training labels.
*
* @param y_train Training labels
* @return The initialized weights
*/
np::Array<float64_t> init_weights(const np::Array<uint8_t>&) noexcept;
/**
* @brief Select the best classifer given their predictions.
*
* @param classifiers The weak classifiers
* @param weights Trained weights of each classifiers
* @param X_feat Integrated features
* @param y Features labels
* @return Index of the best classifier, the best error and the best accuracy
*/
std::tuple<int32_t, float64_t, np::Array<float64_t>> select_best(const np::Array<float64_t>&, const np::Array<float64_t>&, const np::Array<int32_t>&,
const np::Array<uint8_t>&) noexcept;
/**
* @brief Train the weak calssifiers.
*
* @param T Number of weak classifiers
* @param X_feat Integrated features
* @param X_feat_argsort Sorted indexes of the integrated features
* @param y Features labels
* @return List of trained alphas and the list of the final classifiers
*/
std::array<np::Array<float64_t>, 2> train_viola_jones(const size_t&, const np::Array<int32_t>&, const np::Array<uint16_t>&, const np::Array<uint8_t>&) noexcept;
/**
* @brief Compute the accuracy score i.e. how a given set of measurements are close to their true value.
*
* @param y Ground truth labels
* @param y_pred Predicted labels
* @return computed accuracy score
*/
float64_t accuracy_score(const np::Array<uint8_t>&, const np::Array<uint8_t>&) noexcept;
/**
* @brief Compute the precision score i.e. how a given set of measurements are close to each other.
*
* @param y Ground truth labels
* @param y_pred Predicted labels
* @return computed precision score
*/
float64_t precision_score(const np::Array<uint8_t>&, const np::Array<uint8_t>&) noexcept;
/**
* @brief Compute the recall score i.e. the ratio (TP / (TP + FN)) where TP is the number of true positives and FN the number of false negatives.
*
* @param y Ground truth labels
* @param y_pred Predicted labels
* @return computed recall score
*/
float64_t recall_score(const np::Array<uint8_t>&, const np::Array<uint8_t>&) noexcept;
/**
* @brief Compute the F1 score aka balanced F-score or F-measure.
*
* F1 = (2 * TP) / (2 * TP + FP + FN)
* where TP is the true positives,
* FP is the false positives,
* and FN is the false negatives
*
* @param y Ground truth labels
* @param y_pred Predicted labels
* @return computed F1 score
*/
float64_t f1_score(const np::Array<uint8_t>&, const np::Array<uint8_t>&) noexcept;
/**
* @brief Compute the confusion matrix to evaluate a given classification.
*
* A confusion matrix of a binary classification consists of a 2x2 matrix containing
* | True negatives | False positives |
* | False negatives | True positives |
*
* @param y Ground truth labels
* @param y_pred Predicted labels
* @return computed confusion matrix
*/
std::tuple<uint16_t, uint16_t, uint16_t, uint16_t> confusion_matrix(const np::Array<uint8_t>&, const np::Array<uint8_t>&) noexcept;