ViolaJones/cpp/projet.cpp
2023-07-24 02:20:26 +02:00

317 lines
14 KiB
C++

#include <filesystem>
namespace fs = std::filesystem;
#include "data.hpp"
#include "toolbox.hpp"
#include "config.hpp"
#include "gpu_unit_test.hpp"
#include "toolbox_unit_test.hpp"
#include "ViolaJones.hpp"
#include "ViolaJonesGPU.hpp"
#include "ViolaJonesCPU.hpp"
#if GPU_BOOSTED
#define LABEL "GPU"
#define apply_features apply_features_gpu
#define set_integral_image set_integral_image_gpu
#define argsort_2d argsort_2d_gpu
#else
#define LABEL "CPU"
#define apply_features apply_features_cpu
#define set_integral_image set_integral_image_cpu
#define argsort_2d argsort_2d_cpu
#endif
std::tuple<np::Array<int32_t>, np::Array<uint16_t>, np::Array<uint8_t>, np::Array<int32_t>, np::Array<uint8_t>> preprocessing() {
// Creating state saver folders if they don't exist already
if (SAVE_STATE)
for (const char* const folder_name : { "models", "out" })
fs::create_directory(folder_name);
printf("| %-49s | %-18s | %-29s |\n", "Preprocessing", "Time spent (ns)", "Formatted time spent");
printf("|%s|%s|%s|\n", S(51), S(20), S(31));
const auto [ X_train, y_train, X_test, y_test ] = state_saver<uint8_t, 4>("Loading sets", {"X_train", "y_train", "X_test", "y_test"},
FORCE_REDO, SAVE_STATE, OUT_DIR, load_datasets);
#if __DEBUG
print("X_train");
print(X_train.shape);
print(X_train, { IDX_INSPECT });
print("X_test");
print(X_test.shape);
print(X_test, { IDX_INSPECT });
print("y_train");
print(y_train.shape);
print(y_train, { IDX_INSPECT, IDX_INSPECT + IDX_INSPECT_OFFSET });
print("y_test");
print(y_test.shape);
print(y_test, { IDX_INSPECT, IDX_INSPECT + IDX_INSPECT_OFFSET });
#endif
const np::Array<uint8_t> feats = state_saver<uint8_t>("Building features", "feats",
FORCE_REDO, SAVE_STATE, OUT_DIR, build_features, X_train.shape[1], X_train.shape[2]);
#if __DEBUG
print("feats");
print(feats.shape);
print_feat(feats, { IDX_INSPECT });
#endif
const np::Array<uint32_t> X_train_ii = state_saver<uint32_t>("Converting training set to integral images (" LABEL ")", "X_train_ii_" LABEL,
FORCE_REDO, SAVE_STATE, OUT_DIR, set_integral_image, X_train);
const np::Array<uint32_t> X_test_ii = state_saver<uint32_t>("Converting testing set to integral images (" LABEL ")", "X_test_ii_" LABEL,
FORCE_REDO, SAVE_STATE, OUT_DIR, set_integral_image, X_test);
#if __DEBUG
print("X_train_ii");
print(X_train_ii.shape);
print(X_train_ii, { IDX_INSPECT });
print("X_test_ii");
print(X_test_ii.shape);
print(X_test_ii, { IDX_INSPECT });
#endif
const np::Array<int32_t> X_train_feat = state_saver<int32_t>("Applying features to training set (" LABEL ")", "X_train_feat_" LABEL,
FORCE_REDO, SAVE_STATE, OUT_DIR, apply_features, feats, X_train_ii);
const np::Array<int32_t> X_test_feat = state_saver<int32_t>("Applying features to testing set (" LABEL ")", "X_test_feat_" LABEL,
FORCE_REDO, SAVE_STATE, OUT_DIR, apply_features, feats, X_test_ii);
#if __DEBUG
print("X_train_feat");
print(X_train_feat.shape);
print(X_train_feat, { IDX_INSPECT, IDX_INSPECT + IDX_INSPECT_OFFSET });
print("X_test_feat");
print(X_test_feat.shape);
print(X_test_feat, { IDX_INSPECT, IDX_INSPECT + IDX_INSPECT_OFFSET });
#endif
// const Array<int> indices = measure_time_save<Array<int>>("Selecting best features", "indices", select_percentile, X_train_feat, d.y_train);
// const Array<int> indices = measure_time<Array<int>>("Selecting best features", select_percentile, X_train_feat, d.y_train);
#if __DEBUG
// print_feature(indices);
#endif
const np::Array<uint16_t> X_train_feat_argsort = state_saver<uint16_t>("Precalculating training set argsort (" LABEL ")", "X_train_feat_argsort_" LABEL,
FORCE_REDO, SAVE_STATE, OUT_DIR, argsort_2d, X_train_feat);
#if __DEBUG
print("X_train_feat_argsort");
print(X_train_feat_argsort.shape);
print(X_train_feat_argsort, { IDX_INSPECT, IDX_INSPECT + IDX_INSPECT_OFFSET });
#endif
const np::Array<uint16_t> X_test_feat_argsort = state_saver<uint16_t>("Precalculating testing set argsort (" LABEL ")", "X_test_feat_argsort_" LABEL,
FORCE_REDO, SAVE_STATE, OUT_DIR, argsort_2d, X_test_feat);
#if __DEBUG
print("X_test_feat_argsort");
print(X_test_feat_argsort.shape);
print(X_test_feat_argsort, { IDX_INSPECT, IDX_INSPECT + IDX_INSPECT_OFFSET });
#endif
return { X_train_feat, X_train_feat_argsort, y_train, X_test_feat, y_test };
}
void train(const np::Array<int32_t>& X_train_feat, const np::Array<uint16_t>& X_train_feat_argsort, const np::Array<uint8_t>& y_train) {
printf("\n| %-49s | %-18s | %-29s |\n", "Training", "Time spent (ns)", "Formatted time spent");
printf("|%s|%s|%s|\n", S(51), S(20), S(31));
for (const size_t T : TS) {
char title[BUFFER_SIZE] = { 0 };
char alphas_title[BUFFER_SIZE] = { 0 };
char final_classifiers_title[BUFFER_SIZE] = { 0 };
sprintf(title, "ViolaJones T = %-4lu (%s)", T, LABEL);
sprintf(alphas_title, "alphas_%lu_%s", T, LABEL);
sprintf(final_classifiers_title, "final_classifiers_%lu_%s", T, LABEL);
#if __DEBUG
const auto [ alphas, final_classifiers ] = state_saver<float64_t, 2>(title, { alphas_title, final_classifiers_title },
#else
state_saver<float64_t, 2>(title, { alphas_title, final_classifiers_title },
#endif
FORCE_REDO, SAVE_STATE, MODEL_DIR, train_viola_jones, T, X_train_feat, X_train_feat_argsort, y_train);
#if __DEBUG
print("alphas");
print(alphas);
print("final_classifiers");
print(final_classifiers);
#endif
}
}
void testing_and_evaluating(const np::Array<int32_t>& X_train_feat, const np::Array<uint8_t>& y_train, const np::Array<int32_t>& X_test_feat, const np::Array<uint8_t>& y_test) {
printf("\n| %-26s | Time spent (ns) (E) | %-29s | Time spent (ns) (T) | %-29s |\n", "Testing", "Formatted time spent (E)", "Formatted time spent (T)");
printf("|%s|%s|%s|%s|%s|\n", S(28), S(21), S(31), S(21), S(31));
constexpr const size_t NT = sizeof(TS) / sizeof(size_t);
std::array<std::array<float64_t, 8>, NT> results;
size_t i = 0;
for (const size_t T : TS) {
char title[BUFFER_SIZE] = { 0 };
char alphas_title[BUFFER_SIZE] = { 0 };
char final_classifiers_title[BUFFER_SIZE] = { 0 };
sprintf(title, "ViolaJones T = %-4lu (%s)", T, LABEL);
sprintf(alphas_title, MODEL_DIR "/alphas_%lu_%s.bin", T, LABEL);
sprintf(final_classifiers_title, MODEL_DIR "/final_classifiers_%lu_%s.bin", T, LABEL);
const np::Array<float64_t> alphas = load<float64_t>(alphas_title);
const np::Array<float64_t> final_classifiers = load<float64_t>(final_classifiers_title);
std::chrono::system_clock::time_point start = perf_counter_ns();
const np::Array<uint8_t> y_pred_train = classify_viola_jones(alphas, final_classifiers, X_train_feat);
const long long t_pred_train = duration_ns(perf_counter_ns() - start);
const float64_t e_acc = accuracy_score(y_train, y_pred_train);
const float64_t e_f1 = f1_score(y_train, y_pred_train);
float64_t e_FN, e_FP;
std::tie(std::ignore, e_FN, e_FP, std::ignore) = confusion_matrix(y_train, y_pred_train);
start = perf_counter_ns();
const np::Array<uint8_t> y_pred_test = classify_viola_jones(alphas, final_classifiers, X_test_feat);
const long long t_pred_test = duration_ns(perf_counter_ns() - start);
const float64_t t_acc = accuracy_score(y_test, y_pred_test);
const float64_t t_f1 = f1_score(y_test, y_pred_test);
float64_t t_FN, t_FP;
std::tie(std::ignore, t_FN, t_FP, std::ignore) = confusion_matrix(y_test, y_pred_test);
results[i++] = { e_acc, e_f1, e_FN, e_FP, t_acc, t_f1, t_FN, t_FP };
printf("| %-26s | %'19lld | %-29s | %'19lld | %-29s |\n", title, t_pred_train, format_time_ns(t_pred_train).c_str(), t_pred_test, format_time_ns(t_pred_test).c_str());
}
printf("\n| %-19s | ACC (E) | F1 (E) | FN (E) | FP (E) | ACC (T) | F1 (T) | FN (T) | FP (T) |\n", "Evaluating");
printf("|%s|%s|%s|%s|%s|%s|%s|%s|%s|\n", S(21), S(9), S(8), S(8), S(8), S(9), S(8), S(8), S(8));
i = 0;
for (const size_t T : TS) {
char title[BUFFER_SIZE] = { 0 };
sprintf(title, "ViolaJones T = %-4lu", T);
const auto [e_acc, e_f1, e_FN, e_FP, t_acc, t_f1, t_FN, t_FP] = results[i++];
printf("| %-19s | %'6.2f%% | %'6.2f | %'6.0f | %'6.0f | %6.2f%% | %'6.2f | %'6.0f | %'6.0f |\n", title, e_acc * 100, e_f1, e_FN, e_FP, t_acc * 100, t_f1, t_FN, t_FP);
}
}
void final_unit_test() {
printf("\n| %-49s | %-10s | %-17s | %-29s |\n", "Unit testing", "Test state", "Time spent (ns)", "Formatted time spent");
printf("|%s|%s|%s|%s|\n", S(51), S(12), S(19), S(31));
if(fs::exists(OUT_DIR "/X_train_ii_CPU.bin") && fs::exists(OUT_DIR "/X_train_ii_GPU.bin")){
const np::Array<uint32_t> X_train_ii_cpu = load<uint32_t>(OUT_DIR "/X_train_ii_CPU.bin");
const np::Array<uint32_t> X_train_ii_gpu = load<uint32_t>(OUT_DIR "/X_train_ii_GPU.bin");
benchmark_function_void("X_train_ii CPU vs GPU", unit_test_cpu_vs_gpu<uint32_t>, X_train_ii_cpu, X_train_ii_gpu);
}
if(fs::exists(OUT_DIR "/X_test_ii_CPU.bin") && fs::exists(OUT_DIR "/X_test_ii_GPU.bin")){
const np::Array<uint32_t> X_test_ii_cpu = load<uint32_t>(OUT_DIR "/X_test_ii_CPU.bin");
const np::Array<uint32_t> X_test_ii_gpu = load<uint32_t>(OUT_DIR "/X_test_ii_GPU.bin");
benchmark_function_void("X_test_ii CPU vs GPU", unit_test_cpu_vs_gpu<uint32_t>, X_test_ii_cpu, X_test_ii_gpu);
}
if(fs::exists(OUT_DIR "/X_train_feat_CPU.bin")){
const np::Array<int32_t> X_train_feat = load<int32_t>(OUT_DIR "/X_train_feat_CPU.bin");
if(fs::exists(OUT_DIR "/X_train_feat_GPU.bin")){
const np::Array<int32_t> X_train_feat_gpu = load<int32_t>(OUT_DIR "/X_train_feat_CPU.bin");
benchmark_function_void("X_train_feat CPU vs GPU", unit_test_cpu_vs_gpu<int32_t>, X_train_feat, X_train_feat_gpu);
}
np::Array<uint16_t> X_train_feat_argsort_cpu;
uint8_t loaded = 0;
if(fs::exists(OUT_DIR "/X_train_feat_argsort_CPU.bin")){
X_train_feat_argsort_cpu = std::move(load<uint16_t>(OUT_DIR "/X_train_feat_argsort_CPU.bin"));
++loaded;
benchmark_function_void("argsort_2D training set (CPU)", unit_test_argsort_2d<int32_t>, X_train_feat, X_train_feat_argsort_cpu);
}
np::Array<uint16_t> X_train_feat_argsort_gpu;
if(fs::exists(OUT_DIR "/X_train_feat_argsort_GPU.bin")){
X_train_feat_argsort_gpu = std::move(load<uint16_t>(OUT_DIR "/X_train_feat_argsort_GPU.bin"));
++loaded;
benchmark_function_void("argsort_2D training set (GPU)", unit_test_argsort_2d<int32_t>, X_train_feat, X_train_feat_argsort_gpu);
}
if (loaded == 2)
benchmark_function_void("X_train_feat_argsort CPU vs GPU", unit_test_cpu_vs_gpu<uint16_t>, X_train_feat_argsort_cpu, X_train_feat_argsort_gpu);
}
if(fs::exists(OUT_DIR "/X_test_feat_CPU.bin")){
const np::Array<int32_t> X_test_feat = load<int32_t>(OUT_DIR "/X_test_feat_CPU.bin");
if(fs::exists(OUT_DIR "/X_test_feat_GPU.bin")){
const np::Array<int32_t> X_test_feat_gpu = load<int32_t>(OUT_DIR "/X_test_feat_GPU.bin");
benchmark_function_void("X_test_feat CPU vs GPU", unit_test_cpu_vs_gpu<int32_t>, X_test_feat, X_test_feat_gpu);
}
np::Array<uint16_t> X_test_feat_argsort_cpu;
uint8_t loaded = 0;
if(fs::exists(OUT_DIR "/X_test_feat_argsort_CPU.bin")){
X_test_feat_argsort_cpu = std::move(load<uint16_t>(OUT_DIR "/X_test_feat_argsort_CPU.bin"));
++loaded;
benchmark_function_void("argsort_2D testing set (CPU)", unit_test_argsort_2d<int32_t>, X_test_feat, X_test_feat_argsort_cpu);
}
np::Array<uint16_t> X_test_feat_argsort_gpu;
if(fs::exists(OUT_DIR "/X_test_feat_argsort_GPU.bin")){
X_test_feat_argsort_gpu = std::move(load<uint16_t>(OUT_DIR "/X_test_feat_argsort_GPU.bin"));
++loaded;
benchmark_function_void("argsort_2D testing set (GPU)", unit_test_argsort_2d<int32_t>, X_test_feat, X_test_feat_argsort_gpu);
}
if (loaded == 2)
benchmark_function_void("X_test_feat_argsort CPU vs GPU", unit_test_cpu_vs_gpu<uint16_t>, X_test_feat_argsort_cpu, X_test_feat_argsort_gpu);
}
char title[BUFFER_SIZE] = { 0 };
char alphas_title[BUFFER_SIZE] = { 0 };
char final_classifiers_title[BUFFER_SIZE] = { 0 };
for (const size_t T : TS) {
sprintf(alphas_title, MODEL_DIR "/alphas_%lu_CPU.bin", T);
if(!fs::exists(alphas_title)) continue;
const np::Array<float64_t> alphas = load<float64_t>(alphas_title);
sprintf(final_classifiers_title, MODEL_DIR "/final_classifiers_%lu_CPU.bin", T);
if(!fs::exists(final_classifiers_title)) continue;
const np::Array<float64_t> final_classifiers = load<float64_t>(final_classifiers_title);
sprintf(alphas_title, MODEL_DIR "/alphas_%lu_GPU.bin", T);
if(!fs::exists(alphas_title)) continue;
const np::Array<float64_t> alphas_gpu = load<float64_t>(alphas_title);
sprintf(final_classifiers_title, MODEL_DIR "/final_classifiers_%lu_GPU.bin", T);
if(!fs::exists(final_classifiers_title)) continue;
const np::Array<float64_t> final_classifiers_gpu = load<float64_t>(final_classifiers_title);
sprintf(title, "alphas %ld CPU vs GPU", T);
benchmark_function_void(title, unit_test_cpu_vs_gpu<float64_t>, alphas, alphas_gpu);
sprintf(title, "final_classifiers %ld CPU vs GPU", T);
benchmark_function_void(title, unit_test_cpu_vs_gpu<float64_t>, final_classifiers, final_classifiers_gpu);
}
}
int main(){
setlocale(LC_NUMERIC, ""); // Allow proper number display
printf("| %-49s | %-18s | %-29s |\n", "Unit testing", "Time spent (ns)", "Formatted time spent");
printf("|%s|%s|%s|\n", S(51), S(20), S(31));
#if GPU_BOOSTED
benchmark_function_void("Testing GPU capabilities 1D", test_working, 3 + (1<<29));
benchmark_function_void("Testing GPU capabilities 2D", test_working_2d, 3 + (1<<15), 2 + (1<<14));
benchmark_function_void("Testing GPU capabilities 3D", test_working_3d, 9 + (1<<10), 5 + (1<<10), 7 + (1<<9));
#endif
benchmark_function_void("Testing format_time", format_time_test);
benchmark_function_void("Testing format_time_ns", format_time_ns_test);
benchmark_function_void("Testing format_byte_size", format_byte_size_test);
benchmark_function_void("Testing thousand_sep", thousand_sep_test);
printf("\n");
const auto [ X_train_feat, X_train_feat_argsort, y_train, X_test_feat, y_test ] = preprocessing();
train(X_train_feat, X_train_feat_argsort, y_train);
testing_and_evaluating(X_train_feat, y_train, X_test_feat, y_test);
final_unit_test();
#if __DEBUG
printf("\nAFTER CLEANUP\n");
#endif
return EXIT_SUCCESS;
}