Fixed some notations mistakes
This commit is contained in:
@ -16,6 +16,10 @@ $\forall A\forall B(\forall X(X \in A \Leftrightarrow X \in B) \Rightarrow A = B
|
||||
\langsubsection{Spécification}{Specification}
|
||||
%TODO Complete subsection
|
||||
|
||||
\langsubsection{Ensemble vide}{Empty set}
|
||||
|
||||
Il existe un ensemble vide notée $\emptyset$.
|
||||
|
||||
\langsubsection{Paire}{Pairing}
|
||||
%TODO Complete subsection
|
||||
|
||||
@ -24,13 +28,13 @@ $\forall A\forall B(\forall X(X \in A \Leftrightarrow X \in B) \Rightarrow A = B
|
||||
|
||||
Unite all elements of two given sets into one.
|
||||
|
||||
$n,m \in \N^+$
|
||||
$n,m \in \N$
|
||||
|
||||
$A = \{a_1, \cdots, a_n\}$
|
||||
$A = \{a_0, \cdots, a_n\}$
|
||||
|
||||
$B = \{b_1, \cdots, b_m\}$
|
||||
$B = \{b_0, \cdots, b_m\}$
|
||||
|
||||
$A \cup B = \{a_1, \cdots, a_n, b_1, \cdots, b_m\}$
|
||||
$A \union B = \{a_0, \cdots, a_n, b_0, \cdots, b_m\}$
|
||||
|
||||
\langsubsection{Scheme of replacement}{Scheme of replacement}
|
||||
%TODO Complete subsection
|
||||
@ -41,29 +45,43 @@ $A \cup B = \{a_1, \cdots, a_n, b_1, \cdots, b_m\}$
|
||||
\subsection{Power set}
|
||||
%TODO Complete subsection
|
||||
|
||||
For a set $S$ such that $|S| = n \Leftrightarrow \mathbf{P}(S) = 2^n$
|
||||
|
||||
\langsubsection{Choix}{Choice}
|
||||
%TODO Complete subsection
|
||||
|
||||
\section{Intersection}
|
||||
%TODO Complete subsection
|
||||
|
||||
Unite all common elements of two given sets into one.
|
||||
|
||||
$n,m,i \in \N$
|
||||
|
||||
$A = \{a_0, \cdots, a_n, c_0, \cdots, c_n\}$
|
||||
|
||||
$B = \{b_0, \cdots, b_m, c_0, \cdots, c_n\}$
|
||||
|
||||
$A \cap B = \{c_0, \cdots, c_n\}$
|
||||
|
||||
\langsection{Différence des sets}{Set difference}
|
||||
%TODO Complete section
|
||||
|
||||
\langsection{Fonction}{Function}
|
||||
%TODO Complete section
|
||||
|
||||
Une fonction $f$ est un opération qui permet de transformer un ou plusieurs éléments d'un set $A$ en d'autres éléments d'un set $B$.
|
||||
Source: \citeannexes{wikipedia_function_mathematics}
|
||||
|
||||
Une fonction $f$ est un tuple d'un domaine \citeannexes{wikipedia_domain_function} $A$ et un codomaine \citeannexes{wikipedia_codomain} $B$.
|
||||
|
||||
If the domain is the same as the codomain then the function is an endormorphsim \ref{definition:endomorphism} applied on set theory \ref{set_theory}.
|
||||
|
||||
\subsection{Notation}
|
||||
%TODO Complete subsection
|
||||
|
||||
$A \longrightarrow B$
|
||||
|
||||
$ x \longrightarrow f(x)$
|
||||
|
||||
\langsubsection{Injectivité}{Injectivity}
|
||||
%TODO Complete subsection
|
||||
\langsubsection{Injectivité}{Injectivity} \label{definition:injective}
|
||||
|
||||
Source: \citeannexes{wikipedia_injective_function}
|
||||
|
||||
Une fonction $f$ de $E$ dans $F$ est dite \textbf{injective} si, et seulement si, $\forall (a,b) \in E, f(a) = f(b) \Rightarrow a = b$.
|
||||
|
||||
|
Reference in New Issue
Block a user