contents/topology.tex : fixed wrong proof closure of intersection
This commit is contained in:
parent
f97e3b72be
commit
27a23d004b
@ -161,13 +161,11 @@ Source : \citeannexes{scholarpedia_topological_transitivity}
|
||||
|
||||
\subseteqpart
|
||||
|
||||
Posons $A \union B \subseteq A$ par \ref{theorem:subset_implies_closure} $\implies \closure{A \union B} \subseteq \closure{A}$ et respectivement pour $B$, $\closure{A \union B} \subseteq \closure{B}$, et en faisant l'union de deux, cela donne $\closure{A \union B} \subseteq \closure{A} \union \closure{B}$.
|
||||
Sachant que $A \subseteq \closure{A} \land B \subseteq \closure{B}$ par \ref{proposition:closure_is_smallest_closed} en faisait l'union des deux cela donne $A \union B \subseteq \closure{A} \union \closure{B}$, or $\closure{A} \union \closure{B} \equivalence E\setminus\closure{A} \intersection E\setminus\closure{B}$, il s'agit d'une intersection finie d'ouverts donc $\closure{A} \union \closure{B}$ est fermé donc par \ref{proposition:closure_is_smallest_closed} $\implies \closure{A \union B} \subseteq \closure{A} \union \closure{B}$.
|
||||
|
||||
\Lsubseteqpart
|
||||
|
||||
Sachant que $A \subseteq \closure{A} \land B \subseteq \closure{B}$ par \ref{proposition:closure_is_smallest_closed} en faisait l'union des deux cela donne $A \union B \subseteq \closure{A} \union \closure{B}$, or $\closure{A} \union \closure{B} \equivalence E\setminus\closure{A} \intersection E\setminus\closure{B}$, il s'agit d'une intersection finie d'ouverts donc $\closure{A} \union \closure{B}$ est fermé donc par \ref{proposition:closure_is_smallest_closed} $\implies \closure{A \union B} \subseteq \closure{A} \union \closure{B}$.
|
||||
|
||||
$(\closure{A \union B} \subseteq \closure{A} \union \closure{B}) \land (\closure{A \union B} \supseteq \closure{A} \union \closure{B}) \implies \closure{A \union B} = \closure{A} \union \closure{B}$
|
||||
Posons $A \union B \supseteq A$ par \ref{theorem:subset_implies_closure} $\implies \closure{A \union B} \supseteq \closure{A}$ et respectivement pour $B$, $\closure{A \union B} \supseteq \closure{B}$, et en faisant l'union de deux, cela donne $\closure{A \union B} \supseteq \closure{A} \union \closure{B}$.
|
||||
\end{proof}
|
||||
|
||||
\langsection{Complétude}{Completeness}
|
||||
|
Loading…
x
Reference in New Issue
Block a user