Added proofs and fixed typos
This commit is contained in:
		@@ -126,6 +126,53 @@ $\functiondef{n}{\begin{cases}n \le 0 & -2n \\ \otherwise & 2n-1 \end{cases}}$
 | 
			
		||||
 | 
			
		||||
\end{proof}
 | 
			
		||||
 | 
			
		||||
\begin{theorem_sq}
 | 
			
		||||
	Tous les entiers relatifs sont soit pairs ou impairs.
 | 
			
		||||
\end{theorem_sq}
 | 
			
		||||
 | 
			
		||||
\begin{proof}
 | 
			
		||||
	Procédons par induction. L'initialisation $n = 0$ est directe, car $2 \cdot 0 = 0$ ce qui montre que $0$ est pair.
 | 
			
		||||
\end{proof}
 | 
			
		||||
 | 
			
		||||
% \begin{leancode}
 | 
			
		||||
\begin{lstlisting}[language=lean]
 | 
			
		||||
theorem every_integer_is_even_or_odd (n : ℤ) : Even n ∨ Odd n := by
 | 
			
		||||
    induction n with
 | 
			
		||||
    | hz =>
 | 
			
		||||
        left
 | 
			
		||||
        use 0
 | 
			
		||||
        group
 | 
			
		||||
    | hp n' hz =>
 | 
			
		||||
        cases hz with
 | 
			
		||||
        | inl hl =>
 | 
			
		||||
            right
 | 
			
		||||
            obtain ⟨a, ha⟩ := hl
 | 
			
		||||
            rw [ha]
 | 
			
		||||
            use a
 | 
			
		||||
            group
 | 
			
		||||
        | inr hr =>
 | 
			
		||||
            left
 | 
			
		||||
            obtain ⟨a, ha⟩ := hr
 | 
			
		||||
            rw [ha]
 | 
			
		||||
            use a + 1
 | 
			
		||||
            group
 | 
			
		||||
    | hn n' hz =>
 | 
			
		||||
        cases hz with
 | 
			
		||||
        | inl hl =>
 | 
			
		||||
            right
 | 
			
		||||
            obtain ⟨a, ha⟩ := hl
 | 
			
		||||
            rw [ha]
 | 
			
		||||
            use a - 1
 | 
			
		||||
            group
 | 
			
		||||
        | inr hr =>
 | 
			
		||||
            left
 | 
			
		||||
            obtain ⟨a, ha⟩ := hr
 | 
			
		||||
            rw [ha]
 | 
			
		||||
            use a
 | 
			
		||||
            group
 | 
			
		||||
\end{lstlisting}
 | 
			
		||||
% \end{leancode}
 | 
			
		||||
 | 
			
		||||
\langsection{Construction des rationnels $(\Q)$}{Construction of rational numbers}
 | 
			
		||||
%TODO Complete section
 | 
			
		||||
 | 
			
		||||
@@ -136,7 +183,7 @@ $\Q := (p,q) = \Z \cartesianProduct \N^*$
 | 
			
		||||
\langsubsection{Relations binaries}{Binary relations}
 | 
			
		||||
%TODO Complete subsection
 | 
			
		||||
 | 
			
		||||
$\forall (p,q) \in \Q, \forall n \in \N^*, \frac{p}{q} \equivalence \frac{p \cdot n}{q \cdot n}$
 | 
			
		||||
$\forall (p,q) \in \Q, \forall n \in \Z^*, \frac{p}{q} \equivalence \frac{p \cdot n}{q \cdot n}$
 | 
			
		||||
 | 
			
		||||
\langsubsection{Opérateurs}{Operators}
 | 
			
		||||
%TODO Complete subsection
 | 
			
		||||
@@ -254,7 +301,7 @@ Lors d'une longue division, on effectue l'opération $r = p \mod{q}$, par défin
 | 
			
		||||
 | 
			
		||||
\langsubsection{Construction de Cayley–Dickson}{Cayley–Dickson's construction}
 | 
			
		||||
 | 
			
		||||
Source: \citeannexes{wikipedia_cayley_dickson}
 | 
			
		||||
Source : \citeannexes{wikipedia_cayley_dickson}
 | 
			
		||||
 | 
			
		||||
\langsubsection{Coupes de Dedekind}{Dedekind's cuts}
 | 
			
		||||
%TODO Complete subsection
 | 
			
		||||
@@ -262,7 +309,7 @@ Source: \citeannexes{wikipedia_cayley_dickson}
 | 
			
		||||
\langsection{Construction des complexes $(\C)$}{Construction of complex numbers}
 | 
			
		||||
%TODO Complete section
 | 
			
		||||
 | 
			
		||||
Source: \citeannexes{wikipedia_complex_number}
 | 
			
		||||
Source : \citeannexes{wikipedia_complex_number}
 | 
			
		||||
 | 
			
		||||
$\C = (a,b) \in R, a + ib ~= \R $
 | 
			
		||||
 | 
			
		||||
@@ -304,7 +351,7 @@ $\forall((a,b),(c,d)) \in \C, a + ib \Rel_L c + id := \begin{cases}
 | 
			
		||||
 | 
			
		||||
\section{Construction des quaternions $(\Hq)$}
 | 
			
		||||
 | 
			
		||||
Source: \citeannexes{wikipedia_quaternion}
 | 
			
		||||
Source : \citeannexes{wikipedia_quaternion}
 | 
			
		||||
 | 
			
		||||
\langsubsection{Table de Cayley}{Cayley's table}
 | 
			
		||||
%TODO Complete subsection
 | 
			
		||||
@@ -326,7 +373,7 @@ Source: \citeannexes{wikipedia_quaternion}
 | 
			
		||||
 | 
			
		||||
\section{Construction des octonions $(\Ot)$}
 | 
			
		||||
 | 
			
		||||
Source: \citeannexes{wikipedia_octonion}
 | 
			
		||||
Source : \citeannexes{wikipedia_octonion}
 | 
			
		||||
 | 
			
		||||
\langsubsection{Table de Cayley}{Cayley's table}
 | 
			
		||||
%TODO Complete subsection
 | 
			
		||||
@@ -362,9 +409,9 @@ $e_ie_j = \begin{cases} e_j, & \text{if i = 0} \\ e_i, & \text{if j = 0} \\ -\de
 | 
			
		||||
 | 
			
		||||
Où $\delta_{ij}$ est le symbole de Kronecker et $\epsilon_{ijk}$ est un tenseur complètement anti-symétrique.
 | 
			
		||||
 | 
			
		||||
\section{Construction des sedenions $(\Se)$}
 | 
			
		||||
\langsection{Construction des sédénions $(\Se)$}{Construction of the sedenions $(\Se)$}
 | 
			
		||||
 | 
			
		||||
Source: \citeannexes{wikipedia_sedenion}
 | 
			
		||||
Source : \citeannexes{wikipedia_sedenion}
 | 
			
		||||
 | 
			
		||||
\langsubsection{Table de Cayley}{Cayley's table}
 | 
			
		||||
%TODO Complete subsection
 | 
			
		||||
@@ -381,70 +428,55 @@ Source: \citeannexes{wikipedia_sedenion}
 | 
			
		||||
	\hline
 | 
			
		||||
\end{tabular}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\langsection{Nombres premiers}{Prime numbers}
 | 
			
		||||
%TODO Complete section
 | 
			
		||||
 | 
			
		||||
\begin{definition_sq} \label{definition:prime_number}
 | 
			
		||||
Un nombre $n \in \N^*$ est dit premier si, et seulement si, ces facteurs sont 1 et lui-même. Sinon ce nombre est dit composé.
 | 
			
		||||
	\lang{Un nombre $n \in \N \land n \ge 2$ est dit \textbf{premier} si, et seulement si, ces facteurs sont 1 et lui-même. Sinon ce nombre est dit \textbf{composé}.}%
 | 
			
		||||
	{A number $n \in \N \land n \ge 2$ is \textbf{prime} if, and only if, its factors are 1 and itself. Otherwise this number is \textbf{composé}.}
 | 
			
		||||
\end{definition_sq}
 | 
			
		||||
 | 
			
		||||
Par convention, le nombre 1 n'est pas un nombre premier mais cela na pas toujours été le cas.
 | 
			
		||||
 | 
			
		||||
\langsubsection{Infinité}{Infinity}
 | 
			
		||||
Par convention, le nombre 1 n'est pas un nombre premier, mais cela n'a pas toujours été le cas.
 | 
			
		||||
 | 
			
		||||
\begin{theorem_sq} \label{theorem:prime_infinity}
 | 
			
		||||
Il existe une infinité de nombres premiers.
 | 
			
		||||
	Il existe une infinité de nombres premiers.
 | 
			
		||||
\end{theorem_sq}
 | 
			
		||||
 | 
			
		||||
\begin{proof}
 | 
			
		||||
	\lang{Par preuve par contradiction, supposons que le set de nombre premier est fini.}%
 | 
			
		||||
	     {By proof by contraction, let suppose that the set of prime numbers is finite.}
 | 
			
		||||
 | 
			
		||||
\lang{Par preuve par contradiction, supposons que le set de nombre premier est fini.}%
 | 
			
		||||
{By proof by contraction, let suppose that the set of prime numbers is finite.}
 | 
			
		||||
 | 
			
		||||
Let $\Pn := \{p \suchthat p \in \N^* \land p \text{\lang{ est premier}{ is prime}}\}$ and $\omega := (\prod\limits_{p\in \Pn} p) + 1$
 | 
			
		||||
 | 
			
		||||
$\implies \forall p \in \Pn$, $\lnot(p \divides \omega)$
 | 
			
		||||
 | 
			
		||||
$\implies (\omega \notin \Pn \land \omega \in \Pn) \implies \bot$
 | 
			
		||||
 | 
			
		||||
$\implies \card{P} = \infty$
 | 
			
		||||
	\lang{Soit}{Let} $\Pn := \{p \suchthat p \in \N^*, p$ \lang{ est premier}{ is prime} $\}$ \lang{et}{and} $\omega := (\prod\limits_{p\in \Pn} p) + 1$
 | 
			
		||||
 | 
			
		||||
	$\implies \forall p \in \Pn, \omega = 1 \mod p \implies \forall p \in \Pn, \lnot(p \divides \omega) \implies \omega$ \lang{est premier}{is prime} $\implies \omega \notin \Pn \land \omega \in \Pn \implies \bot \implies \card{P} = \infty$
 | 
			
		||||
\end{proof}
 | 
			
		||||
 | 
			
		||||
\langsubsection{Irrationalité}{Irrationality}
 | 
			
		||||
 | 
			
		||||
\langsubsubsection{$\forall n \in \N, \sqrt{n}$ est soit un nombre premier ou un carré parfait}{$\sqrt{n}$ is either a prime number or a perfect square}
 | 
			
		||||
 | 
			
		||||
\begin{theorem_sq} \label{theorem:sqrt_prime}
 | 
			
		||||
$\Pn$ is the set of all prime numbers \ref{definition:prime_number}.
 | 
			
		||||
$\forall p \in \Pn, \sqrt{p} \notin \Q$
 | 
			
		||||
\begin{theorem_sq} \label{theorem:sqrt_prime_is_irrational}
 | 
			
		||||
	\lang{La racine carrée d'un nombre premier est irrationnel.}%
 | 
			
		||||
	     {The square root of a prime number is irrational.}
 | 
			
		||||
\end{theorem_sq}
 | 
			
		||||
 | 
			
		||||
The classical proof of the irrationality of 2 is a specific case of \ref{theorem:sqrt_prime}.
 | 
			
		||||
The classical proof of the irrationality of 2 is a specific case of \ref{theorem:sqrt_prime_is_irrational}.
 | 
			
		||||
 | 
			
		||||
\begin{proof}
 | 
			
		||||
 | 
			
		||||
By contradiction let's assume $\sqrt{p} \in \Q$
 | 
			
		||||
 | 
			
		||||
$a \in \Z, b \in \N^*, \gcd(a,b) = 1, \sqrt{p} = \frac{a}{b}$
 | 
			
		||||
$a \in \Z, b \in \N^*, \gcd(a, b) = 1, \sqrt{p} = \frac{a}{b}$
 | 
			
		||||
 | 
			
		||||
$\implies p = (\frac{a}{b})^2 = \frac{a^2}{b^2}$
 | 
			
		||||
$\implies p = \left(\frac{a}{b}\right)^2 = \frac{a^2}{b^2} \implies b^2p = a^2 \implies p \divides a$
 | 
			
		||||
 | 
			
		||||
$\implies b^2p = a^2$
 | 
			
		||||
Let $c \in \N^*, a = pc$
 | 
			
		||||
 | 
			
		||||
$\implies p \divides a$
 | 
			
		||||
 | 
			
		||||
Let $c \in \N^*$, $a = pc$
 | 
			
		||||
 | 
			
		||||
$\implies b^2 p = (pc)^2=p^2c^2$
 | 
			
		||||
 | 
			
		||||
$\implies b^2 = pc^2$
 | 
			
		||||
 | 
			
		||||
$\implies p \divides b$
 | 
			
		||||
 | 
			
		||||
$\implies (p \divides b \land p \divides a \land \gcd(a,b)=1) \implies \bot$
 | 
			
		||||
 | 
			
		||||
$\implies \sqrt{p} \notin \Q$
 | 
			
		||||
$\implies b^2 p = (pc)^2=p^2c^2 \implies b^2 = pc^2 \implies p \divides b \implies (p \divides b \land p \divides a \land \gcd(a, b) = 1) \implies \bot \implies \sqrt{p} \notin \Q$
 | 
			
		||||
 | 
			
		||||
\end{proof}
 | 
			
		||||
 | 
			
		||||
\begin{theorem_sq}
 | 
			
		||||
	\lang{La racine carrée d'un nombre naturel est soit un nombre premier ou un carré parfait.}%
 | 
			
		||||
	     {The square root of a natural number is either a prime number or a perfect square.}
 | 
			
		||||
\end{theorem_sq}
 | 
			
		||||
 | 
			
		||||
\begin{proof}
 | 
			
		||||
	\lipsum[2]
 | 
			
		||||
	% TODO Complete proof
 | 
			
		||||
\end{proof}
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user