Added proofs and fixed typos
This commit is contained in:
@ -126,6 +126,53 @@ $\functiondef{n}{\begin{cases}n \le 0 & -2n \\ \otherwise & 2n-1 \end{cases}}$
|
||||
|
||||
\end{proof}
|
||||
|
||||
\begin{theorem_sq}
|
||||
Tous les entiers relatifs sont soit pairs ou impairs.
|
||||
\end{theorem_sq}
|
||||
|
||||
\begin{proof}
|
||||
Procédons par induction. L'initialisation $n = 0$ est directe, car $2 \cdot 0 = 0$ ce qui montre que $0$ est pair.
|
||||
\end{proof}
|
||||
|
||||
% \begin{leancode}
|
||||
\begin{lstlisting}[language=lean]
|
||||
theorem every_integer_is_even_or_odd (n : ℤ) : Even n ∨ Odd n := by
|
||||
induction n with
|
||||
| hz =>
|
||||
left
|
||||
use 0
|
||||
group
|
||||
| hp n' hz =>
|
||||
cases hz with
|
||||
| inl hl =>
|
||||
right
|
||||
obtain ⟨a, ha⟩ := hl
|
||||
rw [ha]
|
||||
use a
|
||||
group
|
||||
| inr hr =>
|
||||
left
|
||||
obtain ⟨a, ha⟩ := hr
|
||||
rw [ha]
|
||||
use a + 1
|
||||
group
|
||||
| hn n' hz =>
|
||||
cases hz with
|
||||
| inl hl =>
|
||||
right
|
||||
obtain ⟨a, ha⟩ := hl
|
||||
rw [ha]
|
||||
use a - 1
|
||||
group
|
||||
| inr hr =>
|
||||
left
|
||||
obtain ⟨a, ha⟩ := hr
|
||||
rw [ha]
|
||||
use a
|
||||
group
|
||||
\end{lstlisting}
|
||||
% \end{leancode}
|
||||
|
||||
\langsection{Construction des rationnels $(\Q)$}{Construction of rational numbers}
|
||||
%TODO Complete section
|
||||
|
||||
@ -136,7 +183,7 @@ $\Q := (p,q) = \Z \cartesianProduct \N^*$
|
||||
\langsubsection{Relations binaries}{Binary relations}
|
||||
%TODO Complete subsection
|
||||
|
||||
$\forall (p,q) \in \Q, \forall n \in \N^*, \frac{p}{q} \equivalence \frac{p \cdot n}{q \cdot n}$
|
||||
$\forall (p,q) \in \Q, \forall n \in \Z^*, \frac{p}{q} \equivalence \frac{p \cdot n}{q \cdot n}$
|
||||
|
||||
\langsubsection{Opérateurs}{Operators}
|
||||
%TODO Complete subsection
|
||||
@ -254,7 +301,7 @@ Lors d'une longue division, on effectue l'opération $r = p \mod{q}$, par défin
|
||||
|
||||
\langsubsection{Construction de Cayley–Dickson}{Cayley–Dickson's construction}
|
||||
|
||||
Source: \citeannexes{wikipedia_cayley_dickson}
|
||||
Source : \citeannexes{wikipedia_cayley_dickson}
|
||||
|
||||
\langsubsection{Coupes de Dedekind}{Dedekind's cuts}
|
||||
%TODO Complete subsection
|
||||
@ -262,7 +309,7 @@ Source: \citeannexes{wikipedia_cayley_dickson}
|
||||
\langsection{Construction des complexes $(\C)$}{Construction of complex numbers}
|
||||
%TODO Complete section
|
||||
|
||||
Source: \citeannexes{wikipedia_complex_number}
|
||||
Source : \citeannexes{wikipedia_complex_number}
|
||||
|
||||
$\C = (a,b) \in R, a + ib ~= \R $
|
||||
|
||||
@ -304,7 +351,7 @@ $\forall((a,b),(c,d)) \in \C, a + ib \Rel_L c + id := \begin{cases}
|
||||
|
||||
\section{Construction des quaternions $(\Hq)$}
|
||||
|
||||
Source: \citeannexes{wikipedia_quaternion}
|
||||
Source : \citeannexes{wikipedia_quaternion}
|
||||
|
||||
\langsubsection{Table de Cayley}{Cayley's table}
|
||||
%TODO Complete subsection
|
||||
@ -326,7 +373,7 @@ Source: \citeannexes{wikipedia_quaternion}
|
||||
|
||||
\section{Construction des octonions $(\Ot)$}
|
||||
|
||||
Source: \citeannexes{wikipedia_octonion}
|
||||
Source : \citeannexes{wikipedia_octonion}
|
||||
|
||||
\langsubsection{Table de Cayley}{Cayley's table}
|
||||
%TODO Complete subsection
|
||||
@ -362,9 +409,9 @@ $e_ie_j = \begin{cases} e_j, & \text{if i = 0} \\ e_i, & \text{if j = 0} \\ -\de
|
||||
|
||||
Où $\delta_{ij}$ est le symbole de Kronecker et $\epsilon_{ijk}$ est un tenseur complètement anti-symétrique.
|
||||
|
||||
\section{Construction des sedenions $(\Se)$}
|
||||
\langsection{Construction des sédénions $(\Se)$}{Construction of the sedenions $(\Se)$}
|
||||
|
||||
Source: \citeannexes{wikipedia_sedenion}
|
||||
Source : \citeannexes{wikipedia_sedenion}
|
||||
|
||||
\langsubsection{Table de Cayley}{Cayley's table}
|
||||
%TODO Complete subsection
|
||||
@ -381,70 +428,55 @@ Source: \citeannexes{wikipedia_sedenion}
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
|
||||
\langsection{Nombres premiers}{Prime numbers}
|
||||
%TODO Complete section
|
||||
|
||||
\begin{definition_sq} \label{definition:prime_number}
|
||||
Un nombre $n \in \N^*$ est dit premier si, et seulement si, ces facteurs sont 1 et lui-même. Sinon ce nombre est dit composé.
|
||||
\lang{Un nombre $n \in \N \land n \ge 2$ est dit \textbf{premier} si, et seulement si, ces facteurs sont 1 et lui-même. Sinon ce nombre est dit \textbf{composé}.}%
|
||||
{A number $n \in \N \land n \ge 2$ is \textbf{prime} if, and only if, its factors are 1 and itself. Otherwise this number is \textbf{composé}.}
|
||||
\end{definition_sq}
|
||||
|
||||
Par convention, le nombre 1 n'est pas un nombre premier mais cela na pas toujours été le cas.
|
||||
|
||||
\langsubsection{Infinité}{Infinity}
|
||||
Par convention, le nombre 1 n'est pas un nombre premier, mais cela n'a pas toujours été le cas.
|
||||
|
||||
\begin{theorem_sq} \label{theorem:prime_infinity}
|
||||
Il existe une infinité de nombres premiers.
|
||||
Il existe une infinité de nombres premiers.
|
||||
\end{theorem_sq}
|
||||
|
||||
\begin{proof}
|
||||
\lang{Par preuve par contradiction, supposons que le set de nombre premier est fini.}%
|
||||
{By proof by contraction, let suppose that the set of prime numbers is finite.}
|
||||
|
||||
\lang{Par preuve par contradiction, supposons que le set de nombre premier est fini.}%
|
||||
{By proof by contraction, let suppose that the set of prime numbers is finite.}
|
||||
|
||||
Let $\Pn := \{p \suchthat p \in \N^* \land p \text{\lang{ est premier}{ is prime}}\}$ and $\omega := (\prod\limits_{p\in \Pn} p) + 1$
|
||||
|
||||
$\implies \forall p \in \Pn$, $\lnot(p \divides \omega)$
|
||||
|
||||
$\implies (\omega \notin \Pn \land \omega \in \Pn) \implies \bot$
|
||||
|
||||
$\implies \card{P} = \infty$
|
||||
\lang{Soit}{Let} $\Pn := \{p \suchthat p \in \N^*, p$ \lang{ est premier}{ is prime} $\}$ \lang{et}{and} $\omega := (\prod\limits_{p\in \Pn} p) + 1$
|
||||
|
||||
$\implies \forall p \in \Pn, \omega = 1 \mod p \implies \forall p \in \Pn, \lnot(p \divides \omega) \implies \omega$ \lang{est premier}{is prime} $\implies \omega \notin \Pn \land \omega \in \Pn \implies \bot \implies \card{P} = \infty$
|
||||
\end{proof}
|
||||
|
||||
\langsubsection{Irrationalité}{Irrationality}
|
||||
|
||||
\langsubsubsection{$\forall n \in \N, \sqrt{n}$ est soit un nombre premier ou un carré parfait}{$\sqrt{n}$ is either a prime number or a perfect square}
|
||||
|
||||
\begin{theorem_sq} \label{theorem:sqrt_prime}
|
||||
$\Pn$ is the set of all prime numbers \ref{definition:prime_number}.
|
||||
$\forall p \in \Pn, \sqrt{p} \notin \Q$
|
||||
\begin{theorem_sq} \label{theorem:sqrt_prime_is_irrational}
|
||||
\lang{La racine carrée d'un nombre premier est irrationnel.}%
|
||||
{The square root of a prime number is irrational.}
|
||||
\end{theorem_sq}
|
||||
|
||||
The classical proof of the irrationality of 2 is a specific case of \ref{theorem:sqrt_prime}.
|
||||
The classical proof of the irrationality of 2 is a specific case of \ref{theorem:sqrt_prime_is_irrational}.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
By contradiction let's assume $\sqrt{p} \in \Q$
|
||||
|
||||
$a \in \Z, b \in \N^*, \gcd(a,b) = 1, \sqrt{p} = \frac{a}{b}$
|
||||
$a \in \Z, b \in \N^*, \gcd(a, b) = 1, \sqrt{p} = \frac{a}{b}$
|
||||
|
||||
$\implies p = (\frac{a}{b})^2 = \frac{a^2}{b^2}$
|
||||
$\implies p = \left(\frac{a}{b}\right)^2 = \frac{a^2}{b^2} \implies b^2p = a^2 \implies p \divides a$
|
||||
|
||||
$\implies b^2p = a^2$
|
||||
Let $c \in \N^*, a = pc$
|
||||
|
||||
$\implies p \divides a$
|
||||
|
||||
Let $c \in \N^*$, $a = pc$
|
||||
|
||||
$\implies b^2 p = (pc)^2=p^2c^2$
|
||||
|
||||
$\implies b^2 = pc^2$
|
||||
|
||||
$\implies p \divides b$
|
||||
|
||||
$\implies (p \divides b \land p \divides a \land \gcd(a,b)=1) \implies \bot$
|
||||
|
||||
$\implies \sqrt{p} \notin \Q$
|
||||
$\implies b^2 p = (pc)^2=p^2c^2 \implies b^2 = pc^2 \implies p \divides b \implies (p \divides b \land p \divides a \land \gcd(a, b) = 1) \implies \bot \implies \sqrt{p} \notin \Q$
|
||||
|
||||
\end{proof}
|
||||
|
||||
\begin{theorem_sq}
|
||||
\lang{La racine carrée d'un nombre naturel est soit un nombre premier ou un carré parfait.}%
|
||||
{The square root of a natural number is either a prime number or a perfect square.}
|
||||
\end{theorem_sq}
|
||||
|
||||
\begin{proof}
|
||||
\lipsum[2]
|
||||
% TODO Complete proof
|
||||
\end{proof}
|
||||
|
Reference in New Issue
Block a user