Added files
This commit is contained in:
		
							
								
								
									
										145
									
								
								contents/logic.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										145
									
								
								contents/logic.tex
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,145 @@
 | 
			
		||||
\langchapter{Logique}{Logic}
 | 
			
		||||
%TODO Complete chapter
 | 
			
		||||
 | 
			
		||||
La logique consiste en des opérations effectuées uniquement sur des variables (notées $P,Q,R$) n'ayant pour valeur soit Vrai (noté \true), soit Faux (noté \false).
 | 
			
		||||
%Logic consists of operations done on sole values : True $T$ and False $F$.
 | 
			
		||||
 | 
			
		||||
\langsection{Relation Binaires}{Binary relations}
 | 
			
		||||
%TODO Complete section
 | 
			
		||||
 | 
			
		||||
\langsubsection{Réflexion}{Reflexivity}
 | 
			
		||||
% TODO Complete subsection
 | 
			
		||||
 | 
			
		||||
Une relation $\Rel$ sur $E$ est dite \textbf{réflexive} si et seulement si $\forall a \in E, a \Rel a$.
 | 
			
		||||
 | 
			
		||||
\langsubsection{Transitivité}{Transitivity}
 | 
			
		||||
% TODO Complete subsection
 | 
			
		||||
 | 
			
		||||
Une relation $\Rel$ sur $E$ est dite \textbf{transitive} si et seulement si $\forall (a,b) \in E, a \Rel b \land b \Rel c \equivalance a \Rel c$.
 | 
			
		||||
 | 
			
		||||
\langsubsection{Associativité}{Associativity}
 | 
			
		||||
% TODO Complete subsection
 | 
			
		||||
 | 
			
		||||
Une relation $\Rel$ sur $E$ est dite \textbf{associative} si et seulement si $\forall (a,b) \in E, (a \Rel b) \Rel c \equivalance a \Rel (b \Rel c) \Leftrightarrow a \Rel b \Rel c$.
 | 
			
		||||
 | 
			
		||||
\langsubsection{Commutativité}{Commutativity}
 | 
			
		||||
% TODO Complete subsection
 | 
			
		||||
 | 
			
		||||
Une relation $\Rel$ sur $E$ est dite \textbf{commutative} si et seulement si $\forall (a,b) \in E, a \Rel b = b \Rel a$.
 | 
			
		||||
 | 
			
		||||
\langsection{Opérateurs}{Operators}
 | 
			
		||||
%TODO Complete section
 | 
			
		||||
 | 
			
		||||
\langsubsection{NON}{NOT}
 | 
			
		||||
% TODO Complete subsection
 | 
			
		||||
 | 
			
		||||
$P \Leftrightarrow \lnot \lnot P$
 | 
			
		||||
 | 
			
		||||
\langsubsubsection{Table de vérité}{Truth table}
 | 
			
		||||
 | 
			
		||||
\begin{tabular}{|c|c|}
 | 
			
		||||
	\hline
 | 
			
		||||
	P & $\lnot P$ \\
 | 
			
		||||
	\hline
 | 
			
		||||
	\false & \true \\
 | 
			
		||||
	\hline
 | 
			
		||||
	\true & \false \\
 | 
			
		||||
	\hline
 | 
			
		||||
\end{tabular}
 | 
			
		||||
 | 
			
		||||
\langsubsection{ET}{AND}
 | 
			
		||||
%TODO Complete subsection
 | 
			
		||||
 | 
			
		||||
$P \land Q \equivalance \lnot P \lor \lnot Q$
 | 
			
		||||
 | 
			
		||||
\begin{tabular}{|c|c||c|}
 | 
			
		||||
	\hline
 | 
			
		||||
	P & Q & P $\land$ Q \\
 | 
			
		||||
	\hline
 | 
			
		||||
	\false & \false & \false \\
 | 
			
		||||
	\hline
 | 
			
		||||
	\true & \false & \false \\
 | 
			
		||||
	\hline
 | 
			
		||||
	\false & \true & \false \\
 | 
			
		||||
	\hline
 | 
			
		||||
	\true & \true & \true \\
 | 
			
		||||
	\hline
 | 
			
		||||
\end{tabular}
 | 
			
		||||
 | 
			
		||||
\langsubsection{OU}{OR}
 | 
			
		||||
% TODO Complete subsection
 | 
			
		||||
 | 
			
		||||
$P \lor Q \equivalance \lnot P \land \lnot Q$
 | 
			
		||||
 | 
			
		||||
\medskip
 | 
			
		||||
 | 
			
		||||
\begin{tabular}{|c|c||c|}
 | 
			
		||||
	\hline
 | 
			
		||||
	P & Q & P $\lor$ Q \\
 | 
			
		||||
	\hline
 | 
			
		||||
	\false & \false & \false \\
 | 
			
		||||
	\hline
 | 
			
		||||
	\true & \false & \true \\
 | 
			
		||||
	\hline
 | 
			
		||||
	\false & \true & \true \\
 | 
			
		||||
	\hline
 | 
			
		||||
	\true & \true & \true \\
 | 
			
		||||
	\hline
 | 
			
		||||
\end{tabular}
 | 
			
		||||
 | 
			
		||||
\subsection{Implication}
 | 
			
		||||
%TODO Complete subsection
 | 
			
		||||
 | 
			
		||||
\begin{tabular}{|c|c||c|}
 | 
			
		||||
	\hline
 | 
			
		||||
	P & Q & P $\Rightarrow$ Q \\
 | 
			
		||||
	\hline
 | 
			
		||||
	\false & \false & \true \\
 | 
			
		||||
	\hline
 | 
			
		||||
	\true & \false & \false \\
 | 
			
		||||
	\hline
 | 
			
		||||
	\false & \true & \true \\
 | 
			
		||||
	\hline
 | 
			
		||||
	\true & \true & \true \\
 | 
			
		||||
	\hline
 | 
			
		||||
\end{tabular}
 | 
			
		||||
 | 
			
		||||
\lang{Contraposée}{Contraposition } : \
 | 
			
		||||
$\lnot Q \implies \lnot P$
 | 
			
		||||
 | 
			
		||||
\langsubsection{Équivalence}{Equivalence}
 | 
			
		||||
% TODO Complete subsection
 | 
			
		||||
 | 
			
		||||
\begin{tabular}{|c|c||c|}
 | 
			
		||||
	\hline
 | 
			
		||||
	P & Q & P $\equivalance$ Q \\
 | 
			
		||||
	\hline
 | 
			
		||||
	\false & \false & \true \\
 | 
			
		||||
	\hline
 | 
			
		||||
	\true & \false & \false \\
 | 
			
		||||
	\hline
 | 
			
		||||
	\false & \true & \false \\
 | 
			
		||||
	\hline
 | 
			
		||||
	\true & \true & \true \\
 | 
			
		||||
	\hline
 | 
			
		||||
\end{tabular}
 | 
			
		||||
 | 
			
		||||
\langsubsection{OU exclusif / XOR}{Exclusive OR / XOR}
 | 
			
		||||
%TODO Complete subsection
 | 
			
		||||
 | 
			
		||||
$P \oplus Q \equivalance (P \lor Q) \land \lnot (P \land Q)$
 | 
			
		||||
 | 
			
		||||
\begin{tabular}{|c|c||c|}
 | 
			
		||||
	\hline
 | 
			
		||||
	P & Q & $P \oplus Q$ \\
 | 
			
		||||
	\hline
 | 
			
		||||
	\false & \false & \false \\
 | 
			
		||||
	\hline
 | 
			
		||||
	\true & \false & \true \\
 | 
			
		||||
	\hline
 | 
			
		||||
	\false & \true & \true \\
 | 
			
		||||
	\hline
 | 
			
		||||
	\true & \true & \false \\
 | 
			
		||||
	\hline
 | 
			
		||||
\end{tabular}
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user