contents/computer_science.tex : Better definitions and description && Added AOC implies LEM proof

This commit is contained in:
saundersp 2024-12-20 21:34:20 +01:00
parent 4e09eca481
commit 5d794e7137

View File

@ -25,11 +25,34 @@ Il existe un ensemble vide notée $\emptyset$.
\langsubsection{Paire}{Pairing} \langsubsection{Paire}{Pairing}
%TODO Complete subsection %TODO Complete subsection
Source: \citeannexes{wikipedia_ordered_pair}
\langsubsubsection{Définition de Wiener}{Wiener's definition}
$(a,b) := \{\{\{a\}, \emptyset\}, \{b\}\}$
\langsubsubsection{Définition de Hausdorff}{Hausdorff's definition}
$(a,b) := \{\{a, 1\}, \{b,2\}\}$ where $a \ne 1 \land b \ne 2$
\langsubsubsection{Définition de Kuratowski}{Kuratowski's definition}
\begin{definition_sq} \label{definition:ordered_pair}
$(a,b)_K := \{\{a\}, \{a,b\}\}$
\end{definition_sq}
\langsubsection{Réunion}{Union} \langsubsection{Réunion}{Union}
%TODO Complete section
Unite all elements of two given sets into one. Unite all elements of two given sets into one.
\begin{definition_sq} \label{definition:set_union}
$A \union B := \{x | (x \in A \lor x \in B)\}$
\end{definition_sq}
Pour des ensembles finis : $\forall E,F \in \Cat(\Set), \card{E \union F} = \card{E} + \card{F} - \card{E \intersection F}$
Example :
$n,m \in \N$ $n,m \in \N$
$A := \{a_0, \cdots, a_n\}$ $A := \{a_0, \cdots, a_n\}$
@ -52,28 +75,81 @@ For a set $S$ such that $\card{S} = n \implies \card{\mathbf{P}(S)} = 2^n$
\langsubsection{Choix}{Choice} \langsubsection{Choix}{Choice}
%TODO Complete subsection %TODO Complete subsection
\begin{definition_sq} \label{definition:set_axiom_of_choice}
For any set $X$ of nonempty sets, there exists a choice function $f$ that is defined on $X$ and maps each set of $X$ to an element of that set i.e.
$$\forall X [\emptyset \notin X \implies \exists \function{f}{X}{\Union_{A \in X} A \quad \forall A \in X(f(A) \in A)}]$$
\end{definition_sq}
\begin{theorem_sq} \label{theorem:ac_implies_lem}
The axiom of choice implies the law of excluding middle.
\end{theorem_sq}
\begin{proof}
Assume that $0 \ne 1$ (or any two elements that are not equal), Let $\Omega := \{0, 1\}$, $p \in \mathbf{Prop}$
$A := \{ x \in \Omega | x = 0 \lor p \}$
$B := \{ y \in \Omega | y = 1 \lor p \}$
$\implies 0 \in A \land 1 \in B$
$X := \{ A, B \}$, by definition $\Union X = \Omega$
By the axiom of choice $\implies \exists \function{f}{X}{\Omega}$
Using this function there are 4 cases:
\begin{enumerate}[(1)]
\item $f(A) = f(B) = 0 \implies 0 \in B$ but $((0 = 1) \lor p \implies \top) \implies p$
\item $f(A) = f(B) = 1$ Same reasoning as (1) $\implies p$ % TODO Replace with local labeling and reference
\item $f(A) \neq f(B) = 0 \implies A \neq B$ but $p \implies A = B = \Omega$ (contrapositive of (1) and (2)) $\implies \lnot p$
\item $f(A) \neq f(B) = 1$ Same reasoning as (3) $\implies \lnot p$
\end{enumerate}
So by proof by cases $(p \lor \lnot p)$ which is the law of excluded middle \ref{definition:law_excluding_middle}.
\end{proof}
\section{Intersection} \section{Intersection}
Unite all common elements of two given sets into one. Unite all common elements of two given sets into one.
$n,m,i \in \N$ \begin{definition_sq} \label{definition:set_intersection}
$A \intersection B := \{x | (x \in A \land x \in B)\}$
\end{definition_sq}
$A = \{a_0, \cdots, a_n, c_0, \cdots, c_n\}$ Pour des ensembles finis : $\forall E,F \in \Cat(\Set), \card{E \intersection F} = \card{E} - \card{F} + \card{E \union F}$
$B = \{b_0, \cdots, b_m, c_0, \cdots, c_n\}$ Example :
$A \cap B = \{c_0, \cdots, c_n\}$ $n,m \in \N$
$A := \{a_0, \cdots, a_n, c_0, \cdots, c_n\}$
$B := \{b_0, \cdots, b_m, c_0, \cdots, c_n\}$
$A \intersection B = \{c_0, \cdots, c_n\}$
\langsection{Différence des sets}{Set difference} \langsection{Différence des sets}{Set difference}
%TODO Complete section %TODO Complete section
Exclude elements of a set from a set
\begin{definition_sq} \label{definition:set_difference}
$A \setminus B := \{x | (x \in A \land x \notin B)\}$
\end{definition_sq}
Pour des ensembles finis : $\forall E,F \in \Cat(\Set), \card{E \setminus F} = \card{E} - \card{E \intersection F}$
\langsection{Fonction}{Function} \langsection{Fonction}{Function}
Source: \citeannexes{wikipedia_function_mathematics} Source: \citeannexes{wikipedia_function_mathematics}
\begin{definition_sq} \label{definition:set_function}
Une fonction $f$ est un tuple d'un domaine \citeannexes{wikipedia_domain_function} $A$ et un codomaine \citeannexes{wikipedia_codomain} $B$. Une fonction $f$ est un tuple d'un domaine \citeannexes{wikipedia_domain_function} $A$ et un codomaine \citeannexes{wikipedia_codomain} $B$.
\end{definition_sq}
If the domain is the same as the codomain then the function is an endormorphsim \ref{definition:endomorphism} applied on set theory \ref{set_theory}. If the domain is the same as the codomain then the function is an endormorphsim \ref{definition:endomorphism} applied the category \ref{definition:category} of sets \ref{set_theory}.
\subsection{Notation} \subsection{Notation}
@ -81,22 +157,28 @@ $\functiondef{A}{B}$
$\function{f}{x}{f(x)}$ $\function{f}{x}{f(x)}$
\langsubsection{Injectivité}{Injectivity} \label{definition:injective} \langsubsection{Injectivité}{Injectivity}
Source: \citeannexes{wikipedia_injective_function} Source: \citeannexes{wikipedia_injective_function}
\begin{definition_sq} \label{definition:injective}
Une fonction $f$ de $E$ dans $F$ est dite \textbf{injective} si, et seulement si, $\forall (a,b) \in E, f(a) = f(b) \Rightarrow a = b$. Une fonction $f$ de $E$ dans $F$ est dite \textbf{injective} si, et seulement si, $\forall (a,b) \in E, f(a) = f(b) \Rightarrow a = b$.
\end{definition_sq}
\langsubsection{Surjectivité}{Surjectivity} \label{definition:surjective} \langsubsection{Surjectivité}{Surjectivity}
Source: \citeannexes{wikipedia_surjective_function} Source: \citeannexes{wikipedia_surjective_function}
\begin{definition_sq} \label{definition:surjective}
Une fonction $f$ de $E$ dans $F$ est dite \textbf{surjective} si, et seulement si, $\forall y \in F, \exists x \in E : y = f(x)$. Une fonction $f$ de $E$ dans $F$ est dite \textbf{surjective} si, et seulement si, $\forall y \in F, \exists x \in E : y = f(x)$.
\end{definition_sq}
\langsubsection{Bijectivité}{Bijectivity} \langsubsection{Bijectivité}{Bijectivity}
Source: \citeannexes{wikipedia_bijection} \label{definition:bijection} Source: \citeannexes{wikipedia_bijection}
\begin{definition_sq} \label{definition:bijection}
Une fonction $f$ de $E$ dans $F$ est dite \textbf{bijective} si, et seulement si, elle est à la fois injective \ref{definition:injective} et surjective \ref{definition:surjective} ou $\forall y \in F, \exists! x \in E : y = f(x)$. Une fonction $f$ de $E$ dans $F$ est dite \textbf{bijective} si, et seulement si, elle est à la fois injective \ref{definition:injective} et surjective \ref{definition:surjective} ou $\forall y \in F, \exists! x \in E : y = f(x)$.
\end{definition_sq}
Every bijection is an isomorphism \ref{definition:isomorphism} applied on set theory \ref{set_theory}. Every bijection is an isomorphism \ref{definition:isomorphism} applied on the category \ref{definition:category} of sets \ref{set_theory}.