contents/computer_science.tex : Better definitions and description && Added AOC implies LEM proof
This commit is contained in:
parent
4e09eca481
commit
5d794e7137
@ -25,11 +25,34 @@ Il existe un ensemble vide notée $\emptyset$.
|
|||||||
\langsubsection{Paire}{Pairing}
|
\langsubsection{Paire}{Pairing}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
|
|
||||||
|
Source: \citeannexes{wikipedia_ordered_pair}
|
||||||
|
|
||||||
|
\langsubsubsection{Définition de Wiener}{Wiener's definition}
|
||||||
|
|
||||||
|
$(a,b) := \{\{\{a\}, \emptyset\}, \{b\}\}$
|
||||||
|
|
||||||
|
\langsubsubsection{Définition de Hausdorff}{Hausdorff's definition}
|
||||||
|
|
||||||
|
$(a,b) := \{\{a, 1\}, \{b,2\}\}$ where $a \ne 1 \land b \ne 2$
|
||||||
|
|
||||||
|
\langsubsubsection{Définition de Kuratowski}{Kuratowski's definition}
|
||||||
|
|
||||||
|
\begin{definition_sq} \label{definition:ordered_pair}
|
||||||
|
$(a,b)_K := \{\{a\}, \{a,b\}\}$
|
||||||
|
\end{definition_sq}
|
||||||
|
|
||||||
\langsubsection{Réunion}{Union}
|
\langsubsection{Réunion}{Union}
|
||||||
%TODO Complete section
|
|
||||||
|
|
||||||
Unite all elements of two given sets into one.
|
Unite all elements of two given sets into one.
|
||||||
|
|
||||||
|
\begin{definition_sq} \label{definition:set_union}
|
||||||
|
$A \union B := \{x | (x \in A \lor x \in B)\}$
|
||||||
|
\end{definition_sq}
|
||||||
|
|
||||||
|
Pour des ensembles finis : $\forall E,F \in \Cat(\Set), \card{E \union F} = \card{E} + \card{F} - \card{E \intersection F}$
|
||||||
|
|
||||||
|
Example :
|
||||||
|
|
||||||
$n,m \in \N$
|
$n,m \in \N$
|
||||||
|
|
||||||
$A := \{a_0, \cdots, a_n\}$
|
$A := \{a_0, \cdots, a_n\}$
|
||||||
@ -52,28 +75,81 @@ For a set $S$ such that $\card{S} = n \implies \card{\mathbf{P}(S)} = 2^n$
|
|||||||
\langsubsection{Choix}{Choice}
|
\langsubsection{Choix}{Choice}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
|
|
||||||
|
\begin{definition_sq} \label{definition:set_axiom_of_choice}
|
||||||
|
For any set $X$ of nonempty sets, there exists a choice function $f$ that is defined on $X$ and maps each set of $X$ to an element of that set i.e.
|
||||||
|
|
||||||
|
$$\forall X [\emptyset \notin X \implies \exists \function{f}{X}{\Union_{A \in X} A \quad \forall A \in X(f(A) \in A)}]$$
|
||||||
|
\end{definition_sq}
|
||||||
|
|
||||||
|
\begin{theorem_sq} \label{theorem:ac_implies_lem}
|
||||||
|
The axiom of choice implies the law of excluding middle.
|
||||||
|
\end{theorem_sq}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
Assume that $0 \ne 1$ (or any two elements that are not equal), Let $\Omega := \{0, 1\}$, $p \in \mathbf{Prop}$
|
||||||
|
|
||||||
|
$A := \{ x \in \Omega | x = 0 \lor p \}$
|
||||||
|
|
||||||
|
$B := \{ y \in \Omega | y = 1 \lor p \}$
|
||||||
|
|
||||||
|
$\implies 0 \in A \land 1 \in B$
|
||||||
|
|
||||||
|
$X := \{ A, B \}$, by definition $\Union X = \Omega$
|
||||||
|
|
||||||
|
By the axiom of choice $\implies \exists \function{f}{X}{\Omega}$
|
||||||
|
|
||||||
|
Using this function there are 4 cases:
|
||||||
|
\begin{enumerate}[(1)]
|
||||||
|
\item $f(A) = f(B) = 0 \implies 0 \in B$ but $((0 = 1) \lor p \implies \top) \implies p$
|
||||||
|
\item $f(A) = f(B) = 1$ Same reasoning as (1) $\implies p$ % TODO Replace with local labeling and reference
|
||||||
|
\item $f(A) \neq f(B) = 0 \implies A \neq B$ but $p \implies A = B = \Omega$ (contrapositive of (1) and (2)) $\implies \lnot p$
|
||||||
|
\item $f(A) \neq f(B) = 1$ Same reasoning as (3) $\implies \lnot p$
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
So by proof by cases $(p \lor \lnot p)$ which is the law of excluded middle \ref{definition:law_excluding_middle}.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
\section{Intersection}
|
\section{Intersection}
|
||||||
|
|
||||||
Unite all common elements of two given sets into one.
|
Unite all common elements of two given sets into one.
|
||||||
|
|
||||||
$n,m,i \in \N$
|
\begin{definition_sq} \label{definition:set_intersection}
|
||||||
|
$A \intersection B := \{x | (x \in A \land x \in B)\}$
|
||||||
|
\end{definition_sq}
|
||||||
|
|
||||||
$A = \{a_0, \cdots, a_n, c_0, \cdots, c_n\}$
|
Pour des ensembles finis : $\forall E,F \in \Cat(\Set), \card{E \intersection F} = \card{E} - \card{F} + \card{E \union F}$
|
||||||
|
|
||||||
$B = \{b_0, \cdots, b_m, c_0, \cdots, c_n\}$
|
Example :
|
||||||
|
|
||||||
$A \cap B = \{c_0, \cdots, c_n\}$
|
$n,m \in \N$
|
||||||
|
|
||||||
|
$A := \{a_0, \cdots, a_n, c_0, \cdots, c_n\}$
|
||||||
|
|
||||||
|
$B := \{b_0, \cdots, b_m, c_0, \cdots, c_n\}$
|
||||||
|
|
||||||
|
$A \intersection B = \{c_0, \cdots, c_n\}$
|
||||||
|
|
||||||
\langsection{Différence des sets}{Set difference}
|
\langsection{Différence des sets}{Set difference}
|
||||||
%TODO Complete section
|
%TODO Complete section
|
||||||
|
|
||||||
|
Exclude elements of a set from a set
|
||||||
|
|
||||||
|
\begin{definition_sq} \label{definition:set_difference}
|
||||||
|
$A \setminus B := \{x | (x \in A \land x \notin B)\}$
|
||||||
|
\end{definition_sq}
|
||||||
|
|
||||||
|
Pour des ensembles finis : $\forall E,F \in \Cat(\Set), \card{E \setminus F} = \card{E} - \card{E \intersection F}$
|
||||||
|
|
||||||
\langsection{Fonction}{Function}
|
\langsection{Fonction}{Function}
|
||||||
|
|
||||||
Source: \citeannexes{wikipedia_function_mathematics}
|
Source: \citeannexes{wikipedia_function_mathematics}
|
||||||
|
|
||||||
|
\begin{definition_sq} \label{definition:set_function}
|
||||||
Une fonction $f$ est un tuple d'un domaine \citeannexes{wikipedia_domain_function} $A$ et un codomaine \citeannexes{wikipedia_codomain} $B$.
|
Une fonction $f$ est un tuple d'un domaine \citeannexes{wikipedia_domain_function} $A$ et un codomaine \citeannexes{wikipedia_codomain} $B$.
|
||||||
|
\end{definition_sq}
|
||||||
|
|
||||||
If the domain is the same as the codomain then the function is an endormorphsim \ref{definition:endomorphism} applied on set theory \ref{set_theory}.
|
If the domain is the same as the codomain then the function is an endormorphsim \ref{definition:endomorphism} applied the category \ref{definition:category} of sets \ref{set_theory}.
|
||||||
|
|
||||||
\subsection{Notation}
|
\subsection{Notation}
|
||||||
|
|
||||||
@ -81,22 +157,28 @@ $\functiondef{A}{B}$
|
|||||||
|
|
||||||
$\function{f}{x}{f(x)}$
|
$\function{f}{x}{f(x)}$
|
||||||
|
|
||||||
\langsubsection{Injectivité}{Injectivity} \label{definition:injective}
|
\langsubsection{Injectivité}{Injectivity}
|
||||||
|
|
||||||
Source: \citeannexes{wikipedia_injective_function}
|
Source: \citeannexes{wikipedia_injective_function}
|
||||||
|
|
||||||
|
\begin{definition_sq} \label{definition:injective}
|
||||||
Une fonction $f$ de $E$ dans $F$ est dite \textbf{injective} si, et seulement si, $\forall (a,b) \in E, f(a) = f(b) \Rightarrow a = b$.
|
Une fonction $f$ de $E$ dans $F$ est dite \textbf{injective} si, et seulement si, $\forall (a,b) \in E, f(a) = f(b) \Rightarrow a = b$.
|
||||||
|
\end{definition_sq}
|
||||||
|
|
||||||
\langsubsection{Surjectivité}{Surjectivity} \label{definition:surjective}
|
\langsubsection{Surjectivité}{Surjectivity}
|
||||||
|
|
||||||
Source: \citeannexes{wikipedia_surjective_function}
|
Source: \citeannexes{wikipedia_surjective_function}
|
||||||
|
|
||||||
|
\begin{definition_sq} \label{definition:surjective}
|
||||||
Une fonction $f$ de $E$ dans $F$ est dite \textbf{surjective} si, et seulement si, $\forall y \in F, \exists x \in E : y = f(x)$.
|
Une fonction $f$ de $E$ dans $F$ est dite \textbf{surjective} si, et seulement si, $\forall y \in F, \exists x \in E : y = f(x)$.
|
||||||
|
\end{definition_sq}
|
||||||
|
|
||||||
\langsubsection{Bijectivité}{Bijectivity}
|
\langsubsection{Bijectivité}{Bijectivity}
|
||||||
|
|
||||||
Source: \citeannexes{wikipedia_bijection} \label{definition:bijection}
|
Source: \citeannexes{wikipedia_bijection}
|
||||||
|
|
||||||
|
\begin{definition_sq} \label{definition:bijection}
|
||||||
Une fonction $f$ de $E$ dans $F$ est dite \textbf{bijective} si, et seulement si, elle est à la fois injective \ref{definition:injective} et surjective \ref{definition:surjective} ou $\forall y \in F, \exists! x \in E : y = f(x)$.
|
Une fonction $f$ de $E$ dans $F$ est dite \textbf{bijective} si, et seulement si, elle est à la fois injective \ref{definition:injective} et surjective \ref{definition:surjective} ou $\forall y \in F, \exists! x \in E : y = f(x)$.
|
||||||
|
\end{definition_sq}
|
||||||
|
|
||||||
Every bijection is an isomorphism \ref{definition:isomorphism} applied on set theory \ref{set_theory}.
|
Every bijection is an isomorphism \ref{definition:isomorphism} applied on the category \ref{definition:category} of sets \ref{set_theory}.
|
||||||
|
Loading…
x
Reference in New Issue
Block a user