From 7af7ed82f42cd73e79d76cfbf0cb841b191046be Mon Sep 17 00:00:00 2001 From: saundersp Date: Tue, 3 Dec 2024 18:15:11 +0100 Subject: [PATCH] contents/trigonometry.tex : Added Euler's formula --- contents/trigonometry.tex | 60 +++++++++++++++++++++++++++++++++++++-- 1 file changed, 57 insertions(+), 3 deletions(-) diff --git a/contents/trigonometry.tex b/contents/trigonometry.tex index f7989f9..023e6f5 100644 --- a/contents/trigonometry.tex +++ b/contents/trigonometry.tex @@ -6,9 +6,15 @@ Le cercle unitaire est un cercle de centre $(0,0)$ et de rayon 1. +$\forall x \in \R, \cos^2 x + \sin^2 x = 1$ + \subsection{cos} %TODO Complete subsection +Formule d'Euler + +$\forall \theta \in \R, cos(\theta) = \frac{e^{i\theta} + e^{-i \theta}}{2}$ + $\cos 0 = 1$ $\cos \frac{\pi}{2} = 0$ @@ -17,12 +23,18 @@ $\cos \pi = -1$ $\cos(-\frac{\pi}{2}) = 0$ +$\cos(\frac{\pi}{2} + t) = -\sin(t)$ + $\cos(\pi + t) = -\cos(t)$ +$\cos(\pi - t) = -\cos(t)$ + $\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$ $\cos\frac{\pi}{3} = \frac{1}{2}$ +$\cos\frac{\pi}{4} = \frac{\sqrt{2}}{2}$ + $\forall (a,b) \in \R$ $\cos(a + b) = \cos a \cos b + \sin a \sin b$ @@ -31,20 +43,46 @@ $\cos(a - b) = \cos a \cos b - \sin a \sin b$ $\cos a + \cos b = 2 \cos(\frac{a + b}{2}) \cos(\frac{a - b}{2} )$ +$\cos a - \cos b = -2 \sin(\frac{a + b}{2}) \sin(\frac{a - b}{2} )$ + +$\cos a \cos b = \frac{\cos(a + b) + \cos(a - b)}{2}$ + +$\forall t \in \R, \cos(\frac{\pi}{2} - t) = \sin(t)$ + +$\lim\limits_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$ + +$\frac{d}{dx} \cos x = -\sin x$ + +$\forall x \in [-1, 1], \cos(\arcsin(x)) = \sqrt{1-x^{2}}$ + +$\forall x \in [-1, 1], \cos(\arccos(x)) = x$ + +$\forall x\in\R, \cos^2 x = \frac{1 + \cos(2x)}{2}$ + \subsection{sin} %TODO Complete subsection +Formule d'Euler + +$\forall \theta \in \R, sin(\theta) = \frac{e^{i\theta} - e^{-i \theta}}{2i}$ + $\sin 0 = 0$ -$\sin(\pi - t) = \sin(t)$ +$\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$ -$\sin(\frac{\pi}{2} - t) = \cos(t)$ +$\sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$ $\sin \frac{\pi}{6} = \frac{1}{2}$ $\sin \frac{\pi}{2} = 1$ -%$\sin(\frac{\pi}{2} + t) = -\cos(t)$ +$\sin(\frac{\pi}{2} + t) = -\cos(t)$ + +$\sin(\pi - t) = \sin(t)$ + +$\sin(\pi + t) = -\sin(t)$ + +$\sin(\frac{\pi}{2} - t) = \cos(t)$ $\forall (a,b) \in \R$ @@ -54,13 +92,29 @@ $\sin(a - b) = \sin a \cos b - \sin b \cos a$ $\sin a - \sin b = 2 \cos (\frac{a+b}{2}) \sin (\frac{a-b}{2})$ +$\sin a + \sin b = 2 \sin (\frac{a+b}{2}) \cos (\frac{a-b}{2})$ + $\sin a\sin b = \frac{\cos(a - b) - \cos(a + b)}{2}$ +$\sin a \cos b = \frac{\sin(a - b) - \sin(a + b)}{2}$ + +$\lim\limits_{t \to 0} \frac{\sin t}{t} = 1$ + +$\frac{d}{dx} \sin x = \cos x$ + +$\forall x \in [-1, 1], \sin(\arcsin(x)) = x$ + +$\forall x \in [-1, 1], \sin(\arccos(x)) = \sqrt{1-x^{2}}$ + +$\forall x\in\R, \sin^2 x = \frac{1 - \cos(2x)}{2}$ + \subsection{tan} %TODO Complete subsection $\tan 0 = 0$ +$\tan \frac{\pi}{3} = \sqrt{3}$ + $\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$ $\tan \frac{\pi}{4} = 1$