packages/macros.sty : Added convinences macros
This commit is contained in:
parent
94cdd07e84
commit
aafcec6a3e
@ -56,11 +56,11 @@ Un matrice est une structure qui permet de regrouper plusieurs éléments d'un c
|
||||
\subsection{Trace}
|
||||
%TODO Complete subsection
|
||||
|
||||
$\forall A \in \mathcal{M}_{n}, tr(A)=\sum_{k=0}^na_{kk}$
|
||||
$\forall A \in \mathcal{M}_{n}, tr(A)=\sum\limits_{k=0}^na_{kk}$
|
||||
|
||||
$tr\in\mathcal{L}(\mathcal{M}_n(\K),\K)$
|
||||
|
||||
$\forall(A,B)\in\mathcal{M}_{n,p}(\K)\times\mathcal{M}_{p,n}(\K), tr(AB) = tr(BA)$
|
||||
$\forall(A,B)\in\mathcal{M}_{n,p}(\K)\cartesianProduct\mathcal{M}_{p,n}(\K), tr(AB) = tr(BA)$
|
||||
|
||||
\langsubsection{Valeurs propres}{Eigenvalues}
|
||||
%TODO Complete subsection
|
||||
@ -80,12 +80,12 @@ $Eigenvalues = m \pm \sqrt{m^2-det(A)}$
|
||||
\langsubsection{Déterminant}{Determinant}
|
||||
%%TODO Complete subsection
|
||||
|
||||
$\function{D}{\mathcal{M}_{m\times n}(\R)}{R}$
|
||||
$\function{D}{\mathcal{M}_{m\cartesianProduct n}(\R)}{R}$
|
||||
|
||||
\langsubsubsection{Axiomes}{Axioms}
|
||||
%%TODO Complete subsubsection
|
||||
|
||||
$\forall M \in \mathcal{M}_{m\times n}$
|
||||
$\forall M \in \mathcal{M}_{m\cartesianProduct n}$
|
||||
\begin{itemize}
|
||||
\item{$\forall \lambda \in \K, D(\lambda M) = \lambda D(M)$}
|
||||
\end{itemize}
|
||||
|
@ -94,7 +94,7 @@ Il existe toujours un élément minimum pour n'importe quel sous-ensemble de $\N
|
||||
\langsection{Construction des entiers relatifs $(\Z)$}{Construction of relative numbers}
|
||||
%TODO Complete section
|
||||
|
||||
$\Z := \{\dots,-3,-2,-1,0,1,2,3,\dots\}$
|
||||
$\Z := \{\dots,-3,-2,-1,0,1,2,3,\dots\} = \Union_{n \in \N} n \union \Union_{n \in \N^*} -n$
|
||||
|
||||
\langsubsection{Relations binaries}{Binary relations}
|
||||
%TODO Complete subsection
|
||||
@ -191,7 +191,7 @@ $i^2 = -1$
|
||||
|
||||
\begin{tabular}{|c||c|c|}
|
||||
\hline
|
||||
& 1 & i \\
|
||||
$\cartesianProduct$ & 1 & i \\
|
||||
\hline
|
||||
\hline
|
||||
1 & 1 & i \\
|
||||
@ -229,7 +229,7 @@ Source: \citeannexes{wikipedia_quaternion}
|
||||
|
||||
\begin{tabular}{|c||c|c|c|c|}
|
||||
\hline
|
||||
& 1 & i & j & k \\
|
||||
$\cartesianProduct$ & 1 & i & j & k \\
|
||||
\hline
|
||||
\hline
|
||||
1 & 1 & i & j & k \\
|
||||
@ -251,7 +251,7 @@ Source: \citeannexes{wikipedia_octonion}
|
||||
|
||||
\begin{tabular}{|c||c|c|c|c|c|c|c|c|}
|
||||
\hline
|
||||
$e_i/e_j $ & $e_0$ & $e_1$ & $e_2$ & $e_3$ & $e_4$ & $e_5$ & $e_6$ & $e_7$ \\
|
||||
$\cartesianProduct$ & $e_0$ & $e_1$ & $e_2$ & $e_3$ & $e_4$ & $e_5$ & $e_6$ & $e_7$ \\
|
||||
\hline
|
||||
\hline
|
||||
$e_0$ & $e_0$ & $e_1$ & $e_2$ & $e_3$ & $e_4$ & $e_5$ & $e_6$ & $e_7$ \\
|
||||
@ -289,7 +289,7 @@ Source: \citeannexes{wikipedia_sedenion}
|
||||
|
||||
\begin{tabular}{|c|c|c|c|}
|
||||
\hline
|
||||
& i & j & k \\
|
||||
$\cartesianProduct$ & i & j & k \\
|
||||
\hline
|
||||
i & -1 & k & -j \\
|
||||
\hline
|
||||
@ -324,15 +324,13 @@ $\Pn = \{p | p \in \N^* \land p \text{ est premier}\} = p_0, p_1, \dots p_{n-1},
|
||||
|
||||
$\omega = (\prod_{p\in \Pn} p) + 1$
|
||||
|
||||
$\forall p \in \Pn, \lnot(\omega \div p)$
|
||||
$\implies \forall p \in \Pn$, $\lnot(p \divides \omega)$
|
||||
|
||||
$\omega \notin \Pn \land \omega \in \Pn$
|
||||
$\implies (\omega \notin \Pn \land \omega \in \Pn) \implies \bot$
|
||||
|
||||
$\rightarrow\leftarrow$
|
||||
$\implies \card{P} = \infty$
|
||||
|
||||
$\implies |P| = \infty$
|
||||
|
||||
Il existe une infinité de nombre premiers.
|
||||
\end{proof}
|
||||
|
||||
\langsubsection{Irrationnalité}{Irrationality}
|
||||
|
||||
@ -351,22 +349,22 @@ By contradiction let's assume $\sqrt{p} \in \Q$
|
||||
|
||||
$a \in \Z, b \in \N^*, \text{PGCD}(a,b) = 1, \sqrt{p} = \frac{a}{b}$
|
||||
|
||||
$\Rightarrow p = (\frac{a}{b})^2 = \frac{a^2}{b^2}$
|
||||
$\implies p = (\frac{a}{b})^2 = \frac{a^2}{b^2}$
|
||||
|
||||
$\Rightarrow b^2p = a^2$
|
||||
$\implies b^2p = a^2$
|
||||
|
||||
$\Rightarrow p|a$
|
||||
$\implies p \divides a$
|
||||
|
||||
Let $c \in \N^*$, $a = pc$
|
||||
|
||||
$\Rightarrow b^2 p = (pc)^2=p^2c^2$
|
||||
$\implies b^2 p = (pc)^2=p^2c^2$
|
||||
|
||||
$\Rightarrow b^2 = pc^2$
|
||||
$\implies b^2 = pc^2$
|
||||
|
||||
$\Rightarrow p|b$
|
||||
$\implies p \divides b$
|
||||
|
||||
$\Rightarrow (p|b \land p|a \land \text{PGCD}(a,b)=1) \Rightarrow \bot$
|
||||
$\implies (p \divides b \land p \divides a \land \text{PGCD}(a,b)=1) \implies \bot$
|
||||
|
||||
$\Rightarrow \sqrt{p} \notin \Q$
|
||||
$\implies \sqrt{p} \notin \Q$
|
||||
|
||||
\end{proof}
|
||||
|
@ -13,7 +13,7 @@ $S = \{a,b,c\}$
|
||||
|
||||
\langsubsection{Extensionnalité}{Extensionality}
|
||||
|
||||
$\forall A\forall B(\forall X(X \in A \Leftrightarrow X \in B) \Rightarrow A = B)$
|
||||
$\forall A\forall B(\forall X(X \in A \equivalence X \in B) \implies A = B)$
|
||||
|
||||
\langsubsection{Spécification}{Specification}
|
||||
%TODO Complete subsection
|
||||
@ -32,9 +32,9 @@ Unite all elements of two given sets into one.
|
||||
|
||||
$n,m \in \N$
|
||||
|
||||
$A = \{a_0, \cdots, a_n\}$
|
||||
$A := \{a_0, \cdots, a_n\}$
|
||||
|
||||
$B = \{b_0, \cdots, b_m\}$
|
||||
$B := \{b_0, \cdots, b_m\}$
|
||||
|
||||
$A \union B = \{a_0, \cdots, a_n, b_0, \cdots, b_m\}$
|
||||
|
||||
@ -47,7 +47,7 @@ $A \union B = \{a_0, \cdots, a_n, b_0, \cdots, b_m\}$
|
||||
\subsection{Power set}
|
||||
%TODO Complete subsection
|
||||
|
||||
For a set $S$ such that $\card{S} = n \equivalence \card{\mathbf{P}(S)} = 2^n$
|
||||
For a set $S$ such that $\card{S} = n \implies \card{\mathbf{P}(S)} = 2^n$
|
||||
|
||||
\langsubsection{Choix}{Choice}
|
||||
%TODO Complete subsection
|
||||
@ -77,9 +77,9 @@ If the domain is the same as the codomain then the function is an endormorphsim
|
||||
|
||||
\subsection{Notation}
|
||||
|
||||
$A \longrightarrow B$
|
||||
$\functiondef{A}{B}$
|
||||
|
||||
$ x \longrightarrow f(x)$
|
||||
$\function{f}{x}{f(x)}$
|
||||
|
||||
\langsubsection{Injectivité}{Injectivity} \label{definition:injective}
|
||||
|
||||
|
@ -33,8 +33,8 @@ On appellera $(E,\norm{.})$ un \textbf{espace vectoriel normé}.
|
||||
$n \in \N^*, E = \R^n$
|
||||
|
||||
\begin{itemize}
|
||||
\item{$\norm{x}_1 = \sum_{i=0}^n \abs{x_i}$}
|
||||
\item{$\norm{x}_2 = \sqrt{\sum_{i=0}^n x^2_i}$}
|
||||
\item{$\norm{x}_1 = \sum\limits_{i=0}^n \abs{x_i}$}
|
||||
\item{$\norm{x}_2 = \sqrt{\sum\limits_{i=0}^n x^2_i}$}
|
||||
\item{$\norm{x}_\infty = \max\{\abs{x_0}, \dots, \abs{x_n}\}$}
|
||||
\item{$E = R_n[X], \norm{P} = \int_0^1 \abs{P(x)}dx$}
|
||||
\item{$m \in \N^*, E = \mathcal{L}(R^n, R^m), \norm{\phi} = \max\{\norm{\phi(e_i)}_\infty, i \subseteq N^*\}$} ($e_i :=$ base canonique de $\R^n$)
|
||||
@ -100,7 +100,7 @@ Soit $(E, \norm{.})$ un espace vectoriel normé et \suite{x} une suite d’élé
|
||||
Montrer que toute sous-suite de $(x_n)_{n \in \N}$ converge vers $l$.
|
||||
\\
|
||||
|
||||
Soit $\epsilon > 0$, comme $\lim_{n \to +\infty} x_n = l$
|
||||
Soit $\epsilon > 0$, comme $\lim\limits_{n \to +\infty} x_n = l$
|
||||
|
||||
$\implies \exists n_0 \in \N$ tel que $\forall x \ge n_0$, $x_n \in \mathbb{B}(l, \epsilon)$
|
||||
\\
|
||||
@ -156,7 +156,7 @@ $K$ est compact $\implies K$ possède un point d'accumulation.
|
||||
$K$ est compact
|
||||
\\
|
||||
|
||||
Soit $\epsilon > 0$ \&\& $X = \{x_n, \forall n \in \N \}$ \&\& $X \subset K$
|
||||
Soit $\epsilon > 0 \land X = \{x_n, \forall n \in \N \} \land X \subset K$
|
||||
|
||||
$\implies \exists l \in K$ tel que $\lim\limits_{n \to +\infty} x_n = l \in \mathbb{B}(l, \epsilon) \subset K$
|
||||
|
||||
@ -170,7 +170,7 @@ $\implies K$ possède un point d'accumulation
|
||||
$K$ possède un point d'accumulation. $\implies K$ est compact.
|
||||
\end{lemme_sq}
|
||||
|
||||
Soit $X = \{x_n, \forall n \in \N \}$ \&\& $X \subset K$
|
||||
Soit $X = \{x_n, \forall n \in \N \} \land X \subset K$
|
||||
|
||||
\paragraph{Si $X$ est fini}
|
||||
|
||||
|
@ -16,6 +16,7 @@
|
||||
\newcommand{\R}{\mathbb{R}} % Real numbers symbol
|
||||
\newcommand{\C}{\mathbb{C}} % Complex numbers symbol
|
||||
\newcommand{\Cat}{\mathcal{C}} % Category
|
||||
\newcommand{\Set}{\mathbf{Set}} % Set category
|
||||
\newcommand{\K}{\mathbb{K}} % Corps
|
||||
\newcommand{\Hq}{\mathbb{H}} % Quaternions numbers symbol
|
||||
\newcommand{\Ot}{\mathbb{O}} % Octonions numbers symbol
|
||||
@ -24,6 +25,7 @@
|
||||
\newcommand{\false}{F} % New symbol for false value
|
||||
\newcommand{\true}{V} % New symbol for true value
|
||||
\DeclareMathOperator{\Rel}{\mathcal{R}} % New symbol for binary relations
|
||||
\DeclareMathOperator{\composes}{\circ} % New symbol composing morphisms
|
||||
\DeclarePairedDelimiter{\abs}{|}{|}
|
||||
\DeclarePairedDelimiter{\card}{|}{|}
|
||||
\DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor}
|
||||
@ -33,10 +35,14 @@
|
||||
\newtheorem{theorem}{\lang{Théorème}{Theoreme}}
|
||||
\newtheorem{lemme}{Lemme}
|
||||
\newcommandx{\suite}[3][1=n,2=n]{$(#3_{#1})_{#2 \in \N}$}
|
||||
\newcommand{\innerproduct}[2]{\langle #1, #2 \rangle}
|
||||
\newenvironment{definition_sq}{\begin{mdframed}\begin{definition}}{\end{definition}\end{mdframed}}
|
||||
\newenvironment{theorem_sq}{\begin{mdframed}\begin{theorem}}{\end{theorem}\end{mdframed}}
|
||||
\newenvironment{lemme_sq}{\begin{mdframed}\begin{lemme}}{\end{lemme}\end{mdframed}}
|
||||
\newcommand{\norm}[1]{\|#1\|}
|
||||
\newcommand{\norm}[1]{\lVert#1\rVert}
|
||||
\newcommand{\Norm}[1]{\lVert #1\rVert}
|
||||
\newcommand{\powerset}[1]{\mathcal{P}(#1)} % Power set
|
||||
\newcommand{\converges}{\rightarrow}
|
||||
\newcommand{\equivalence}{\Leftrightarrow}
|
||||
\renewcommand{\implies}{\Longrightarrow}
|
||||
\newcommand{\Limplies}{\Longleftarrow}
|
||||
@ -44,10 +50,16 @@
|
||||
\newcommand{\Limpliespart}{\fbox{$\Limplies$}}
|
||||
\DeclareMathOperator{\divides}{\mid}
|
||||
\DeclareMathOperator{\suchas}{\text{\lang{tel que}{such as}}}
|
||||
\renewcommand{\function}[3]{#1 : #2 \longrightarrow #3}
|
||||
\renewcommand{\function}[3]{#1 \colon #2 \longrightarrow #3}
|
||||
\newcommand{\functiondef}[2]{\hspace{15pt}#1 \longmapsto #2}
|
||||
\newcommand{\otherwise}{\text{\lang{Sinon}{Otherwise}}}
|
||||
\DeclareMathOperator{\union}{\cup}
|
||||
\DeclareMathOperator{\Union}{\bigcup}
|
||||
\DeclareMathOperator{\intersection}{\cap}
|
||||
\DeclareMathOperator{\Intersection}{\bigcap}
|
||||
\DeclareMathOperator{\cartesianProduct}{\times}
|
||||
\DeclareMathOperator{\CartesianProduct}{\bigtimes}
|
||||
\newcommand{\discreteInterval}[1]{[\![#1]\!]}
|
||||
|
||||
\renewcommand{\smallskip}{\vspace{3pt}}
|
||||
\renewcommand{\medskip}{\vspace{6pt}}
|
||||
|
Loading…
x
Reference in New Issue
Block a user