diff --git a/contents/algebra.tex b/contents/algebra.tex index 97e0fb9..6aae4b0 100644 --- a/contents/algebra.tex +++ b/contents/algebra.tex @@ -13,9 +13,17 @@ \langsubsection{Magma unital}{Unital magma} \begin{definition_sq} \label{definition:unital_magma} - Un magma \ref{definition:magma} $(E, \star)$ est dit \textbf{unital} si $\exists 0_E \in E, \forall a \in E, 0_E \star a = a$. + Un magma \ref{definition:magma} $(E, \star)$ est dit \textbf{unital} si $\exists 0_E \in E, \forall a \in E, 0_E \star a = a \star 0_E = a$. \end{definition_sq} +\begin{theorem_sq} + L'élément neutre d'un magma unital $(E, \star)$ est unique. +\end{theorem_sq} + +\begin{proof} + Soit $e, f$ deux éléments neutres d'un magma unital $(E, \star)$, par définition d'un élément neutre, on peut poser $e = e \star f = f = f \star e = e$ +\end{proof} + \subsection{Monoïde} \begin{definition_sq} \label{definition:monoid}