From fec2806d5835d3734cdb4bc815640c7092e12f6e Mon Sep 17 00:00:00 2001 From: saundersp Date: Wed, 12 Feb 2025 19:00:06 +0100 Subject: [PATCH] contents/category_theory.tex : Moved homomorphism before epimorphism and added monomorphism definition --- contents/category_theory.tex | 58 +++++++++++++++++++++--------------- references/annexes.bib | 4 +++ 2 files changed, 38 insertions(+), 24 deletions(-) diff --git a/contents/category_theory.tex b/contents/category_theory.tex index a1f8fe5..2b4abe7 100644 --- a/contents/category_theory.tex +++ b/contents/category_theory.tex @@ -16,6 +16,23 @@ A category $\Cat$ is a collection of objects and morphisms A morphism $f$ on a category $\Cat$ is a transformation between a domain and a codomain. \end{definition_sq} +\langsubsection{Homomorphisme}{Homomorphism} + +Source : \citeannexes{wikipedia_homomorphism} + +\begin{definition_sq} \label{definition:homomorphism} + A homomorphism is a morphism between two categories that keeps algebraic structures. Let $(X, \star)$ and $(Y, \composes)$ two algebraic structures and let $\function{\phi}{X}{Y}$. + + $$\forall (x, y) \in X^2, \phi(x \star y) = \phi(x) \composes \phi(y)$$ + + Similarly, such that the following diagram commutes : + + \[\begin{tikzcd} + X \cartesianProduct X \arrow[r, "\phi \cartesianProduct \phi"] \arrow[d, "\star"] & Y \cartesianProduct Y \arrow[d, "\composes"] \\ + X \arrow[r, "\phi"] & Y + \end{tikzcd}\] +\end{definition_sq} + \langsubsection{Section et rétraction}{Section and retraction} let $\function{f}{X}{Y}$ and $\function{g}{Y}{X}$ such that $f \composes g = \identity_Y$ @@ -35,18 +52,29 @@ Right inverse of a morphism, is the dual of a retraction. A section that is also Left inverse of a morphism, is the dual of a section. A retraction that is also a monomorphism is an isomorphism +\langsubsection{Monomorphisme}{Monomorphism} \label{definition:monomorphism} + +Source : \citeannexes{wikipedia_monomorphism} + +A monomorphism is a homomorphism that is injective \ref{definition:injective}, similarly, a morphism that is left-cancellable i.e. + +Let $\function{f}{X}{Y}$ and $\function{g_1,g_2}{Y}{Z}$, $f \composes g_1 = f \composes g_2 \implies g_1 = g_2$. + +\[\begin{tikzcd} + Z \arrow[r, "g_1", shift left=1ex] \arrow[r, "g_2", shift right=1ex] & X \arrow[r, "f"] & Y +\end{tikzcd}\] + \langsubsection{Epimorphisme}{Epimorphism} \label{definition:epimorphism} -%TODO Complete section -Source: \citeannexes{wikipedia_epimorphism} +Source : \citeannexes{wikipedia_epimorphism} -Let $\function{f}{X}{Y}$ and $\function{g_1,g_2}{Y}{Z}$ +An epimorphism is a homomorphism that is surjective \ref{definition:surjective}, similarly, a morphism that is right-cancellable i.e. -An epimorphism is a morphism that is right-cancellable i.e. $g_1 \composes f = g_2 \composes f \implies g_1 = g_2$ +Let $\function{f}{X}{Y}$ and $\function{g_1,g_2}{Y}{Z}$, $g_1 \composes f = g_2 \composes f \implies g_1 = g_2$. -\begin{tikzcd} +\[\begin{tikzcd} X \arrow[r, "f"] & Y \arrow[r, "g_1", shift left=1ex] \arrow[r, "g_2", shift right=1ex] & Z -\end{tikzcd} +\end{tikzcd}\] \langsubsection{Isomorphisme}{Isomorphism} \label{definition:isomorphism} %TODO Complete section @@ -67,24 +95,6 @@ Isomorphism is a bijective \ref{definition:bijection} morphism. An automorphism is a morphism that is both an isomorphism \ref{definition:isomorphism} and an endomorphism \ref{definition:endomorphism}. -\langsubsection{Homomorphisme}{Homomorphism} -%TODO Complete section - -\begin{definition_sq} \label{definition:homomorphism} - A homomorphism is a morphism between two categories that keeps algebraic structures. Let $(X, \star)$ and $(Y, \composes)$ two algebraic structures and let $\function{\phi}{X}{Y}$. - - $$\forall (x, y) \in X^2, \phi(x \star y) = \phi(x) \composes \phi(y)$$ - - Similarly, such that the following diagram commutes : - - \begin{tikzcd} - X \cartesianProduct X \arrow[r, "\phi \cartesianProduct \phi"] \arrow[d, "\star"] & Y \cartesianProduct Y \arrow[d, "\composes"] \\ - X \arrow[r, "\phi"] & Y - \end{tikzcd} -\end{definition_sq} - -Source: \citeannexes{wikipedia_homomorphism} - \langsubsection{Homeomorphisme}{Homeomorphism} %TODO Complete section diff --git a/references/annexes.bib b/references/annexes.bib index e05d904..efcc13f 100644 --- a/references/annexes.bib +++ b/references/annexes.bib @@ -349,6 +349,10 @@ title = {Epimorphism}, url = {https://en.wikipedia.org/wiki/Epimorphism} } +@online{wikipedia_monomorphism, + title = {Monomorphism}, + url = {https://en.wikipedia.org/wiki/Monomorphism} +} @online{wikipedia_section_category_theory, title = {Section (category theory)}, url = {https://en.wikipedia.org/wiki/Section\_(category_theory)}