Compare commits
No commits in common. "c1a6223f549d7639b00e7d44017fb64322c22810" and "70fa02319079acaa1a6e4cad255f0352629b4847" have entirely different histories.
c1a6223f54
...
70fa023190
@ -12,6 +12,7 @@
|
|||||||
\SetAlgoLined
|
\SetAlgoLined
|
||||||
\SetNoFillComment
|
\SetNoFillComment
|
||||||
\tcc{This is a comment}
|
\tcc{This is a comment}
|
||||||
|
\vspace{3mm}
|
||||||
some code here\;
|
some code here\;
|
||||||
$x \leftarrow 0$\;
|
$x \leftarrow 0$\;
|
||||||
$y \leftarrow 0$\;
|
$y \leftarrow 0$\;
|
||||||
@ -34,28 +35,16 @@ $y \leftarrow 0$\;
|
|||||||
\caption{what}
|
\caption{what}
|
||||||
\end{algorithm}
|
\end{algorithm}
|
||||||
|
|
||||||
\langsection{Exemple en Haskell}{Haskell example}
|
|
||||||
\begin{lstlisting}[language=Haskell]
|
|
||||||
fibonacci :: Int -> Int
|
|
||||||
fibonacci 0 = 0
|
|
||||||
fibonacci 1 = 1
|
|
||||||
fibonacci n = fibonacci (n - 1) + fibonacci (n - 2)
|
|
||||||
\end{lstlisting}
|
|
||||||
|
|
||||||
\langsection{Exemple en Python}{Python example}
|
\langsection{Exemple en Python}{Python example}
|
||||||
\begin{lstlisting}[language=Python]
|
\begin{lstlisting}[language=Python]
|
||||||
def fibonacci(n: int) -> int:
|
def fnc(a, b):
|
||||||
if n == 0 or n == 1:
|
return a + b
|
||||||
return n
|
|
||||||
return fibonacci(n - 1) + fibonacci(n - 2)
|
|
||||||
\end{lstlisting}
|
\end{lstlisting}
|
||||||
|
|
||||||
\langsection{Exemple en C}{C example}
|
\langsection{Exemple en C}{C example}
|
||||||
\begin{lstlisting}[language=C]
|
\begin{lstlisting}[language=C]
|
||||||
int fibonacci(const int n){
|
int fnc(int a, int b){
|
||||||
if (n == 0 || n == 1)
|
return a + b;
|
||||||
return n;
|
|
||||||
return fibonacci(n - 1) + fibonacci(n - 2);
|
|
||||||
}
|
}
|
||||||
\end{lstlisting}
|
\end{lstlisting}
|
||||||
|
|
||||||
|
@ -23,7 +23,7 @@ $\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$
|
|||||||
|
|
||||||
$\cos\frac{\pi}{3} = \frac{1}{2}$
|
$\cos\frac{\pi}{3} = \frac{1}{2}$
|
||||||
|
|
||||||
$\forall (a,b) \in \R$
|
$\forall (a,b) \in \R^2$
|
||||||
|
|
||||||
$\cos(a + b) = \cos a \cos b + \sin a \sin b$
|
$\cos(a + b) = \cos a \cos b + \sin a \sin b$
|
||||||
|
|
||||||
@ -46,7 +46,7 @@ $\sin \frac{\pi}{2} = 1$
|
|||||||
|
|
||||||
%$\sin(\frac{\pi}{2} + t) = -\cos(t)$
|
%$\sin(\frac{\pi}{2} + t) = -\cos(t)$
|
||||||
|
|
||||||
$\forall (a,b) \in \R$
|
$\forall (a,b) \in \R^2$
|
||||||
|
|
||||||
$\sin(a + b) = \sin a \cos b + \sin b \cos a$
|
$\sin(a + b) = \sin a \cos b + \sin b \cos a$
|
||||||
|
|
||||||
@ -76,20 +76,8 @@ $\tan(a - b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}$
|
|||||||
\subsection{Combinaisons}
|
\subsection{Combinaisons}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
|
|
||||||
$\forall (a,b) \in \R$
|
$\forall (a,b) \in \R^2$
|
||||||
|
|
||||||
$\sin a \cos b = \frac{\sin(a + b) + \sin(a - b)}{2}$
|
$\sin a \cos b = \frac{\sin(a + b) + \sin(a - b)}{2}$
|
||||||
|
|
||||||
\langsection{Fonctions hyperboliques}{Hyperbolic functions}
|
|
||||||
|
|
||||||
\subsection{cosh}
|
|
||||||
|
|
||||||
$cosh\ x = \frac{e^x + e^{-x}}{2} = \frac{e^{2x} + 1}{2e^x} = \frac{1 + e^{-2x}}{2e^{-x}}$
|
|
||||||
|
|
||||||
\subsection{sinh}
|
|
||||||
|
|
||||||
$sinh\ x = \frac{e^x - e^{-x}}{2} = \frac{e^{2x} - 1}{2e^x} = \frac{1 - e^{-2x}}{2e^{-x}}$
|
|
||||||
|
|
||||||
\subsection{tanh}
|
|
||||||
|
|
||||||
$tanh\ x = \frac{sinh\ x}{cosh\ x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user