Compare commits
No commits in common. "d0c9dab3300d186601ee338f05caed9399c5b1ae" and "c8b77b243593469506a50ef10e41a027e3d38ccd" have entirely different histories.
d0c9dab330
...
c8b77b2435
@ -1,9 +1,9 @@
|
|||||||
FROM alpine:3.20.3
|
FROM alpine:3.20.2
|
||||||
|
|
||||||
RUN apk add --no-cache \
|
RUN apk add --no-cache \
|
||||||
make=4.4.1-r2 \
|
make=4.4.1-r2 \
|
||||||
graphviz=9.0.0-r2 \
|
graphviz=9.0.0-r2 \
|
||||||
texlive-xetex=20240210.69778-r4 \
|
texlive-xetex=20240210.69778-r3 \
|
||||||
texmf-dist-langfrench=2024.0-r5 \
|
texmf-dist-langfrench=2024.0-r5 \
|
||||||
texmf-dist-latexextra=2024.0-r5 \
|
texmf-dist-latexextra=2024.0-r5 \
|
||||||
texmf-dist-bibtexextra=2024.0-r5 \
|
texmf-dist-bibtexextra=2024.0-r5 \
|
||||||
|
@ -6,19 +6,19 @@
|
|||||||
|
|
||||||
\subsection{Magma} \label{definition:magma}
|
\subsection{Magma} \label{definition:magma}
|
||||||
|
|
||||||
Soit un ensemble $S$ avec une loi de composition interne $(\star)$ notée $(S,\star)$ tel que $\forall(a,b) \in S, a \star b \in S$.
|
Soit une structure $S$ avec une loi de composition interne $(+)$ notée $(S,+)$ tel que $\forall(a,b) \in S, a + b \in S$.
|
||||||
|
|
||||||
\langsubsection{Magma unital}{Unital magma} \label{definition:unital_magma}
|
\langsubsection{Magma unital}{Unital magma} \label{definition:unital_magma}
|
||||||
|
|
||||||
Soit un magma \ref{definition:magma} $(S,\star)$ untial en $0_e$ tel que $\exists 0_e \in S, \forall a \in S, 0_e \star a = a$.
|
Soit un magma \ref{definition:magma} $(S,+)$ untial en $0_e$ tel que $\exists 0_e \in S, \forall a \in S, 0_e + a = a$.
|
||||||
|
|
||||||
\subsection{Monoïd} \label{definition:monoid}
|
\subsection{Monoïd} \label{definition:monoid}
|
||||||
|
|
||||||
Soit un magma unital \ref{definition:unital_magma} $(S,\star)$ dont la loi de composition est associative \ref{definition:associativity}.
|
Soit un magma unital \ref{definition:unital_magma} $(S,+)$ dont la loi de composition est associative \ref{definition:associativity}.
|
||||||
|
|
||||||
\langsubsection{Groupe}{Group} \label{definition:group}
|
\langsubsection{Groupe}{Group} \label{definition:group}
|
||||||
|
|
||||||
Soit un monoïd \ref{definition:monoid} $(G,\star)$ ayant un élément inverse tel que $\forall a \in G, \exists a^{-1} \in G, a \star a^{-1} = 0_e$.
|
Soit un monoid \ref{definition:monoid} $(G,+)$ ayant un élément inverse tel que $\forall a \in G, \exists a^{-1} \in G, a + a^{-1} = 0_e$.
|
||||||
|
|
||||||
\langsubsubsection{Groupe abélien}{Abelian group} \label{definition:abelian_group}
|
\langsubsubsection{Groupe abélien}{Abelian group} \label{definition:abelian_group}
|
||||||
|
|
||||||
@ -26,17 +26,13 @@ Un groupe abélien est un groupe \ref{definition:group} dont la loi de compositi
|
|||||||
|
|
||||||
\langsubsection{Corps}{Field} \label{definition:field}
|
\langsubsection{Corps}{Field} \label{definition:field}
|
||||||
|
|
||||||
Soit une structure $F$ avec deux lois de composition interne $(+)$ et $(\cartesianProduct)$ notée $(F,+,\cartesianProduct)$.
|
Soit une structure $F$ avec deux lois de composition interne $(+)$ et $(\times)$ notée $(F,+,\times)$.
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item{$(F,+)$ est un groupe \ref{definition:group} unital en $0_e$}
|
\item{$(F,+)$ est un groupe \ref{definition:group} unital en $0_e$}
|
||||||
\item{$(F\backslash\{0_e\},\cartesianProduct)$ est un groupe \ref{definition:group}}
|
\item{$(F\backslash\{0_e\},\times)$ est un groupe \ref{definition:group}}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\langsubsubsection{Corps abélien}{Abelian field} \label{definition:abelian_field}
|
|
||||||
|
|
||||||
Un corps abélien est un corps \ref{definition:field} dont la loi de composition est commutatif \ref{definition:commutativity}.
|
|
||||||
|
|
||||||
\langsubsection{Anneau}{Ring} \label{definition:ring}
|
\langsubsection{Anneau}{Ring} \label{definition:ring}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
|
|
||||||
@ -56,11 +52,11 @@ Un matrice est une structure qui permet de regrouper plusieurs éléments d'un c
|
|||||||
\subsection{Trace}
|
\subsection{Trace}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
|
|
||||||
$\forall A \in \mathcal{M}_{n}, tr(A)=\sum\limits_{k=0}^na_{kk}$
|
$\forall A \in \mathcal{M}_{n}, tr(A)=\sum_{k=0}^na_{kk}$
|
||||||
|
|
||||||
$tr\in\mathcal{L}(\mathcal{M}_n(\K),\K)$
|
$tr\in\mathcal{L}(\mathcal{M}_n(\K),\K)$
|
||||||
|
|
||||||
$\forall(A,B)\in\mathcal{M}_{n,p}(\K)\cartesianProduct\mathcal{M}_{p,n}(\K), tr(AB) = tr(BA)$
|
$\forall(A,B)\in\mathcal{M}_{n,p}(\K)\times\mathcal{M}_{p,n}(\K), tr(AB) = tr(BA)$
|
||||||
|
|
||||||
\langsubsection{Valeurs propres}{Eigenvalues}
|
\langsubsection{Valeurs propres}{Eigenvalues}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
@ -80,12 +76,12 @@ $Eigenvalues = m \pm \sqrt{m^2-det(A)}$
|
|||||||
\langsubsection{Déterminant}{Determinant}
|
\langsubsection{Déterminant}{Determinant}
|
||||||
%%TODO Complete subsection
|
%%TODO Complete subsection
|
||||||
|
|
||||||
$\function{D}{\mathcal{M}_{m\cartesianProduct n}(\R)}{R}$
|
$\function{D}{\mathcal{M}_{m\times n}(\R)}{R}$
|
||||||
|
|
||||||
\langsubsubsection{Axiomes}{Axioms}
|
\langsubsubsection{Axiomes}{Axioms}
|
||||||
%%TODO Complete subsubsection
|
%%TODO Complete subsubsection
|
||||||
|
|
||||||
$\forall M \in \mathcal{M}_{m\cartesianProduct n}$
|
$\forall M \in \mathcal{M}_{m\times n}$
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item{$\forall \lambda \in \K, D(\lambda M) = \lambda D(M)$}
|
\item{$\forall \lambda \in \K, D(\lambda M) = \lambda D(M)$}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
@ -190,37 +186,6 @@ Et vérifiant $\forall(\alpha,\beta) \in \K, \forall(a,b,c) \in E$
|
|||||||
\item{Distributivité (gauche et droite) $*$ de $\K \Leftrightarrow a(\alpha*\beta)+(\alpha*\beta)a+\alpha(\beta a)$}
|
\item{Distributivité (gauche et droite) $*$ de $\K \Leftrightarrow a(\alpha*\beta)+(\alpha*\beta)a+\alpha(\beta a)$}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\langsubsection{Famille libre}{Free family} \label{definition:vector_space_free_family}
|
|
||||||
|
|
||||||
\begin{definition_sq}
|
|
||||||
Une famille \suite{e} est dite \textbf{libre} si
|
|
||||||
$$\forall i \in \discreteInterval{1, n}, \lambda_i \in K, \sum\limits_{i = 1}^n \lambda_i e_i = 0 \implies \lambda_i = 0$$
|
|
||||||
\end{definition_sq}
|
|
||||||
|
|
||||||
\langsubsection{Famille génératrice}{Generating family} \label{definition:vector_space_generating_family}
|
|
||||||
|
|
||||||
\begin{definition_sq}
|
|
||||||
Une famille \suite{e} est dite \textbf{génératrice} de $E$ si
|
|
||||||
$$\forall v \in E, \exists \lambda \in K^n, \sum\limits_{i=1}^n \lambda_i e_i = v$$
|
|
||||||
\end{definition_sq}
|
|
||||||
|
|
||||||
\langsubsection{Bases}{Basis} \label{definition:vector_space_basis}
|
|
||||||
|
|
||||||
\begin{definition_sq}
|
|
||||||
Une famille est dite une \textbf{base} de $E$ si elle est libre \ref{definition:vector_space_free_family} et génératrice \ref{definition:vector_space_generating_family} $\equivalence \forall v \in E, \exists! \lambda \in K^n, \sum\limits_{i=1}^n \lambda_i e_i = v$
|
|
||||||
\end{definition_sq}
|
|
||||||
|
|
||||||
\subsection{Dimension} \label{definition:vector_space_dimension}
|
|
||||||
%TODO Complete subsection
|
|
||||||
|
|
||||||
\langsubsubsection{Rang}{Rank} \label{definition:vector_space_rank}
|
|
||||||
%TODO Complete subsubsection
|
|
||||||
|
|
||||||
\begin{theorem_sq} \label{theorem:vector_space_rank}
|
|
||||||
Soit $E$ et $G$ $K$-e.v \ref{definition:sub_vector_space} et $\function{\phi}{E}{F}$.
|
|
||||||
$\dim E = \dim \ker(\phi) + \dim im(\phi) = \dim \ker(\phi) = rg(\phi)$
|
|
||||||
\end{theorem_sq}
|
|
||||||
|
|
||||||
\langsubsection{Sous-espaces vectoriels}{Sub vector spaces} \label{definition:sub_vector_space}
|
\langsubsection{Sous-espaces vectoriels}{Sub vector spaces} \label{definition:sub_vector_space}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
|
|
||||||
@ -266,161 +231,3 @@ $\implies F \subset G \lor G \subset F$
|
|||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\langsubsection{Application linéaire}{Linear maps} \label{definition:linearity}
|
|
||||||
|
|
||||||
Une application linéaire est un morphisme \ref{definition:morphism}
|
|
||||||
appliqué à la catégorie \ref{definition:category}
|
|
||||||
des espaces vectoriels \ref{definition:vector_space}.
|
|
||||||
|
|
||||||
\langsubsubsection{Axiomes}{Axioms}
|
|
||||||
|
|
||||||
Given $f: \mathbb{K} \rightarrow \mathbb{K}$
|
|
||||||
\begin{itemize}
|
|
||||||
\item{Additivity: $\forall(x,y) \in \mathbb{K}, f(x+y)=f(x)+f(y)$}
|
|
||||||
\item{Homogeneity: $\forall(a,x) \in \mathbb{K}, f(ax)=af(x)$}
|
|
||||||
\item{Or (a faster way): $\forall(a,x,y) \in \mathbb{K}, f(x + ay) = f(x) + af(y)$}
|
|
||||||
\end{itemize}
|
|
||||||
|
|
||||||
\langsubsection{Forme bilinéaire}{Bilinear form} \label{definition:bilinear_form}
|
|
||||||
|
|
||||||
\langsubsubsection{Axiomes}{Axioms}
|
|
||||||
|
|
||||||
Une forme bilinéaire est une fonction $\function{B}{E \cartesianProduct E}{K}$ sur un $\K$-espace vectoriel $E$ qui est linéaire sur les deux arguments tel qui respectes les axiomes suivants :
|
|
||||||
|
|
||||||
\begin{itemize}
|
|
||||||
\item{$\forall u,v,w \in E, B(u + v,w) = B(u,w) + B(v,w)$}
|
|
||||||
\item{$\forall u,v \in E, \forall a \in K, B(au,w) = aB(u,w)$}
|
|
||||||
\item{$\forall u,v,w \in E, B(u,w + v) = B(u,v) + B(u,w)$}
|
|
||||||
\item{$\forall u,v \in E, \forall a \in K, B(u,aw) = aB(u,w)$}
|
|
||||||
\end{itemize}
|
|
||||||
|
|
||||||
\langsubsection{Produit scalaire}{Inner product}
|
|
||||||
|
|
||||||
\langsubsubsection{Produit scalaire réel}{Real inner product}
|
|
||||||
|
|
||||||
\langsubsubsubsection{Axiomes}{Axioms}
|
|
||||||
|
|
||||||
Un produit scalaire notée $\innerproduct{-}{-}$ sur un $\R$-espace vectoriel $E$ est une forme bilinéaire \ref{definition:bilinear_form} qui respectes les axiomes suivants :
|
|
||||||
|
|
||||||
\begin{itemize}
|
|
||||||
\item{Symétrie: $\forall(x,y) \in E, \innerproduct{x}{y} = \innerproduct{y}{x}$}
|
|
||||||
\item{Non-dégénérescence: $\forall x \in E, \innerproduct{x}{x} = 0 \implies x = 0$}
|
|
||||||
\end{itemize}
|
|
||||||
|
|
||||||
\langsubsection{Norme Réel}{Real norm}
|
|
||||||
|
|
||||||
\langsubsubsection{Axiomes}{Axioms}
|
|
||||||
|
|
||||||
Une norme notée $\norm{.}_E$ sur un $\R$-espace vectoriel $E$ est une application $\function{\norm{.}}{E}{R_+}$ qui respectes les axiomes suivants :
|
|
||||||
|
|
||||||
\begin{itemize}
|
|
||||||
\item{Séparation: $\forall x \in E, \norm{x} = 0 \implies x = 0$}
|
|
||||||
\item{Homogénéité: $\forall x \in E, \forall \lambda \in \R \norm{\lambda x} = \abs{\lambda}\norm{x}$}
|
|
||||||
\item{Inégalité triangulaire: $\forall x,y \in E, \norm{x + y} \le \norm{x} + \norm{y}$}
|
|
||||||
\end{itemize}
|
|
||||||
|
|
||||||
\langsubsection{Espace pré-hilbertien}{Pre-hilbertian Space}
|
|
||||||
|
|
||||||
A $\K$-espace vectoriel muni d'un produit scalaire est appelé un espace pré-hilbertien.
|
|
||||||
|
|
||||||
\langsubsection{Espace Euclidien}{Euclidian Space}
|
|
||||||
|
|
||||||
Un espace euclidien est une espace pré-hilbertien réel à dimension finie.
|
|
||||||
|
|
||||||
\pagebreak
|
|
||||||
|
|
||||||
\section{Devoir Maison 1 : Algèbre multilinéaire}
|
|
||||||
|
|
||||||
\section{Exercice 1}
|
|
||||||
|
|
||||||
Soit $(E,\innerproduct{.}{.})$ un espace euclidien. On définit
|
|
||||||
|
|
||||||
$$\function{i}{E \setminus \{0\}}{E \setminus \{0\}}$$
|
|
||||||
$$\functiondef{x}{\frac{x}{\norm{x}^2}}$$
|
|
||||||
|
|
||||||
qu'on appelle \textit{inversion} de centre 0 et de rapport 1.
|
|
||||||
|
|
||||||
\begin{enumerate}
|
|
||||||
\item{Montrer que $i$ est une bijection de $E \setminus \{0\}$ sur lui-même, vérifiant $i \composes i = id_E$}
|
|
||||||
|
|
||||||
\begin{proof}\par
|
|
||||||
Si $i$ est une bijection de $E$ alors il existe une fonction réciproque (ou inverse) $i^{-1}$ telle que $i \composes i^{-1} = id_E$, or $i$ est défini comme son propre inverse. Donc il suffit d'évaluer $i$ avec lui-même pour terminer la preuve.
|
|
||||||
|
|
||||||
$$i \composes i = \frac{\frac{x}{\norm{x}^2}}{\norm{\frac{x}{\norm{x}^2}}^2} = \frac{\frac{x}{\norm{x}^2}}{\frac{\norm{x}^2}{\norm{x}^4}} = \frac{\norm{x}^2 x}{\norm{x}^2} = x = id_E$$
|
|
||||||
\end{proof}
|
|
||||||
|
|
||||||
\item{Montrer $$\forall x,y \in E \setminus \{0\}, \frac{\innerproduct{i(x)}{i(y)}}{\norm{i(x)}\norm{i(y)}} = \frac{\innerproduct{x}{y}}{\norm{x}\norm{y}}$$ On dit que $i$ est une application \textit{conforme}.}
|
|
||||||
|
|
||||||
\begin{proof}\par
|
|
||||||
Soit $x,y \in E \setminus \{0\}$
|
|
||||||
$$\frac{\innerproduct{i(x)}{i(y)}}{\norm{i(x)}\norm{i(y)}} = \frac{\innerproduct{\frac{x}{\norm{x}^2}}{\frac{y}{\norm{y}^2}}}{\norm{\frac{x}{\norm{x}^2}}\norm{\frac{y}{\norm{y}^2}}} = \frac{\frac{\innerproduct{x}{y}}{\norm{x}^2\norm{y}^2}}{\frac{\norm{x}\norm{y}}{\norm{x}^2\norm{y}^2}} = \frac{\innerproduct{x}{y}}{\norm{x}\norm{y}}$$
|
|
||||||
\end{proof}
|
|
||||||
|
|
||||||
\item{Démontrer que $$\forall x,y \in E \setminus \{0\}, \norm{i(x) - i(y)} = \frac{\norm{x - y}}{\norm{x}\norm{y}}$$}
|
|
||||||
|
|
||||||
\begin{proof}\par
|
|
||||||
Soit $x,y \in E \setminus \{0\}$
|
|
||||||
$$\norm{i(x) - i(y)} = \norm{\frac{x}{\norm{x}^2} - \frac{y}{\norm{y}^2}} = \norm{\frac{\norm{y}^2 x - \norm{x}^2 y}{\norm{x}^2\norm{y}^2}} = \frac{\norm{\norm{y}^2 x - \norm{x}^2 y}}{\norm{x}^2\norm{y}^2} = \frac{\sqrt{\innerproduct{\norm{y}^2 x - \norm{x}^2 y}{\norm{y}^2 x - \norm{x}^2 y}}}{\norm{x}^2\norm{y}^2}$$
|
|
||||||
$$= \frac{\sqrt{\innerproduct{\norm{y}^2 x}{\norm{y}^2 x} - 2 \innerproduct{\norm{y}^2 x}{\norm{x}^2 y} - \innerproduct{\norm{x}^2 y}{\norm{x}^2 y}}}{\norm{x}^2\norm{y}^2} = \frac{\sqrt{\norm{y}^4 \norm{x}^2 - 2\norm{y}^2 \norm{x}^2 \innerproduct{x}{y} - \norm{x}^4\norm{y}^2}}{\norm{x}^2\norm{y}^2}$$
|
|
||||||
$$= \frac{\sqrt{\norm{y}^2 \norm{x}^2 (\norm{y}^2 - 2 \innerproduct{x}{y} - \norm{x}^2)}}{\norm{x}^2\norm{y}^2} = \frac{\norm{x}\norm{y}\sqrt{\innerproduct{x - y}{x - y}}}{\norm{x}^2\norm{y}^2} = \frac{\norm{x - y}}{\norm{x}\norm{y}}$$
|
|
||||||
\end{proof}
|
|
||||||
|
|
||||||
\item{En déduire que pour tous $x,y,z \in E \setminus \{0\}$, on a $$\norm{x}\norm{y - z} \le \norm{y}\norm{x - z} + \norm{z}\norm{x - y}$$}
|
|
||||||
|
|
||||||
\begin{proof}\par
|
|
||||||
Posons $a,b \in E \setminus \{0\}$ tel que $a := i(y) - i(x)$ et $b := i(x) - i(z)$, puis utilisons l'inégalité triangulaire $\norm{a + b} \le \norm{a} + \norm{b}$ et développons.
|
|
||||||
$$\norm{(i(y) - i(x)) + (i(x) - i(z))} = \norm{i(y) - i(z)} \le \norm{i(x) - i(z)} + \norm{i(x) - i(y)}$$
|
|
||||||
Par le résultat de (3).
|
|
||||||
$$\frac{\norm{y - z}}{\norm{y}\norm{z}} \le \frac{\norm{x - z}}{\norm{x}\norm{z}} + \frac{\norm{x - y}}{\norm{x}\norm{y}}$$
|
|
||||||
En multipliant par $\norm{x}\norm{y}\norm{z}$
|
|
||||||
$$\norm{x}\norm{y - z} \le \norm{y}\norm{x - z} + \norm{z}\norm{x - y}$$
|
|
||||||
\end{proof}
|
|
||||||
|
|
||||||
\item{En déduire que pour tous $a,b,c,d \in E \setminus \{0\}$, on a $$\norm{a - c}\norm{b - d} \le \norm{a - b}\norm{c - d} + \norm{a - d}\norm{b - c}$$ C'est l'\textit{inégalité de Ptolémée}.}
|
|
||||||
|
|
||||||
\bigskip
|
|
||||||
Pour cette preuve nous aurons besoin de ce lemme :
|
|
||||||
\begin{lemme_sq} \label{norm_diff_symetry}
|
|
||||||
$\forall (e,f) \in E, \norm{e - f} = \norm{f - e}$
|
|
||||||
\begin{proof}\par
|
|
||||||
Soit $E$ un $\K$-espace vectoriel et soit $e,f \in E$.
|
|
||||||
|
|
||||||
Comme $\exists (-1_K) \in \K(+, \cartesianProduct) \suchas (-1_K) \cartesianProduct (-1_K) = 1_K$.
|
|
||||||
|
|
||||||
$$\norm{e - f} = \norm{-1_\K(f - e)} = \abs{-1_\K}\norm{f - e} = \norm{f - e}$$
|
|
||||||
\end{proof}
|
|
||||||
\end{lemme_sq}
|
|
||||||
|
|
||||||
\begin{proof}\par
|
|
||||||
Soit $a,b,c,d \in E$.
|
|
||||||
|
|
||||||
Comme $E$ est un espace vectoriel et donc un groupe par $E(+)$.
|
|
||||||
|
|
||||||
Posons $x,y,z \in E$ tel que $x := a - c$, $y := a - b$ et $z := a - d$.
|
|
||||||
|
|
||||||
Ainsi, par le résultat (4).
|
|
||||||
|
|
||||||
$$\norm{x}\norm{y - z} \le \norm{y}\norm{x - z} + \norm{z}\norm{x - y}$$
|
|
||||||
|
|
||||||
Par le lemme (\ref{norm_diff_symetry}).
|
|
||||||
|
|
||||||
$$\norm{x}\norm{z - y} \le \norm{y}\norm{z - x} + \norm{z}\norm{y - x}$$
|
|
||||||
|
|
||||||
En développant $x$, $y$ et $z$ on obtient
|
|
||||||
|
|
||||||
$$\norm{a - c}\norm{(a - d) - (a - b)} \le \norm{a - b}\norm{(a - d) - (a - c)} + \norm{a - d}\norm{(a - b) - (a - c)}$$
|
|
||||||
|
|
||||||
$$\norm{a - c}\norm{b - d} \le \norm{a - b}\norm{c - d} + \norm{a - d}\norm{b - c}$$
|
|
||||||
\end{proof}
|
|
||||||
|
|
||||||
Soit $u \in E$ tel que $\norm{u} = 1$ et soit $\alpha \ne 0$. Considérons $H = \{ x \in E | \innerproduct{x}{u} = \alpha \}$. C'est un hyperplan affine de $E$.
|
|
||||||
|
|
||||||
\item{Justifier que $0 \notin H$. En utilisant la question 3, montrer alors que $i(H) = S \setminus \{0\}$, où $$S = \lbrace x \in E | \Norm{x - \frac{1}{2\alpha}u} = \frac{1}{2\abs{\alpha}} \rbrace$$}
|
|
||||||
% TODO Complete 6.
|
|
||||||
|
|
||||||
Soient $a \in E$ et $R > 0$. On note $S(a,R) = \{ x \in E | \norm{x - a} = R\}$ la sphère de centre $a$ et de rayon $R$.
|
|
||||||
|
|
||||||
\item{On suppose que $\norm{a} \ne R$. Montrer que $0 \notin S(a,R)$ et que $$ i(S(a,R)) = S(\frac{a}{\norm{a}^2 - R^2}, \frac{R}{\abs{\norm{a}^2 - R^2}})$$}
|
|
||||||
% TODO Complete 7.
|
|
||||||
\end{enumerate}
|
|
||||||
|
|
||||||
|
@ -94,7 +94,7 @@ Il existe toujours un élément minimum pour n'importe quel sous-ensemble de $\N
|
|||||||
\langsection{Construction des entiers relatifs $(\Z)$}{Construction of relative numbers}
|
\langsection{Construction des entiers relatifs $(\Z)$}{Construction of relative numbers}
|
||||||
%TODO Complete section
|
%TODO Complete section
|
||||||
|
|
||||||
$\Z := \{\dots,-3,-2,-1,0,1,2,3,\dots\} = \Union_{n \in \N} n \union \Union_{n \in \N^*} -n$
|
$\Z := \{\dots,-3,-2,-1,0,1,2,3,\dots\}$
|
||||||
|
|
||||||
\langsubsection{Relations binaries}{Binary relations}
|
\langsubsection{Relations binaries}{Binary relations}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
@ -191,7 +191,7 @@ $i^2 = -1$
|
|||||||
|
|
||||||
\begin{tabular}{|c||c|c|}
|
\begin{tabular}{|c||c|c|}
|
||||||
\hline
|
\hline
|
||||||
$\cartesianProduct$ & 1 & i \\
|
& 1 & i \\
|
||||||
\hline
|
\hline
|
||||||
\hline
|
\hline
|
||||||
1 & 1 & i \\
|
1 & 1 & i \\
|
||||||
@ -229,7 +229,7 @@ Source: \citeannexes{wikipedia_quaternion}
|
|||||||
|
|
||||||
\begin{tabular}{|c||c|c|c|c|}
|
\begin{tabular}{|c||c|c|c|c|}
|
||||||
\hline
|
\hline
|
||||||
$\cartesianProduct$ & 1 & i & j & k \\
|
& 1 & i & j & k \\
|
||||||
\hline
|
\hline
|
||||||
\hline
|
\hline
|
||||||
1 & 1 & i & j & k \\
|
1 & 1 & i & j & k \\
|
||||||
@ -251,7 +251,7 @@ Source: \citeannexes{wikipedia_octonion}
|
|||||||
|
|
||||||
\begin{tabular}{|c||c|c|c|c|c|c|c|c|}
|
\begin{tabular}{|c||c|c|c|c|c|c|c|c|}
|
||||||
\hline
|
\hline
|
||||||
$\cartesianProduct$ & $e_0$ & $e_1$ & $e_2$ & $e_3$ & $e_4$ & $e_5$ & $e_6$ & $e_7$ \\
|
$e_i/e_j $ & $e_0$ & $e_1$ & $e_2$ & $e_3$ & $e_4$ & $e_5$ & $e_6$ & $e_7$ \\
|
||||||
\hline
|
\hline
|
||||||
\hline
|
\hline
|
||||||
$e_0$ & $e_0$ & $e_1$ & $e_2$ & $e_3$ & $e_4$ & $e_5$ & $e_6$ & $e_7$ \\
|
$e_0$ & $e_0$ & $e_1$ & $e_2$ & $e_3$ & $e_4$ & $e_5$ & $e_6$ & $e_7$ \\
|
||||||
@ -289,7 +289,7 @@ Source: \citeannexes{wikipedia_sedenion}
|
|||||||
|
|
||||||
\begin{tabular}{|c|c|c|c|}
|
\begin{tabular}{|c|c|c|c|}
|
||||||
\hline
|
\hline
|
||||||
$\cartesianProduct$ & i & j & k \\
|
& i & j & k \\
|
||||||
\hline
|
\hline
|
||||||
i & -1 & k & -j \\
|
i & -1 & k & -j \\
|
||||||
\hline
|
\hline
|
||||||
@ -324,13 +324,15 @@ $\Pn = \{p | p \in \N^* \land p \text{ est premier}\} = p_0, p_1, \dots p_{n-1},
|
|||||||
|
|
||||||
$\omega = (\prod_{p\in \Pn} p) + 1$
|
$\omega = (\prod_{p\in \Pn} p) + 1$
|
||||||
|
|
||||||
$\implies \forall p \in \Pn$, $\lnot(p \divides \omega)$
|
$\forall p \in \Pn, \lnot(\omega \div p)$
|
||||||
|
|
||||||
$\implies (\omega \notin \Pn \land \omega \in \Pn) \implies \bot$
|
$\omega \notin \Pn \land \omega \in \Pn$
|
||||||
|
|
||||||
$\implies \card{P} = \infty$
|
$\rightarrow\leftarrow$
|
||||||
|
|
||||||
\end{proof}
|
$\implies |P| = \infty$
|
||||||
|
|
||||||
|
Il existe une infinité de nombre premiers.
|
||||||
|
|
||||||
\langsubsection{Irrationnalité}{Irrationality}
|
\langsubsection{Irrationnalité}{Irrationality}
|
||||||
|
|
||||||
@ -349,22 +351,22 @@ By contradiction let's assume $\sqrt{p} \in \Q$
|
|||||||
|
|
||||||
$a \in \Z, b \in \N^*, \text{PGCD}(a,b) = 1, \sqrt{p} = \frac{a}{b}$
|
$a \in \Z, b \in \N^*, \text{PGCD}(a,b) = 1, \sqrt{p} = \frac{a}{b}$
|
||||||
|
|
||||||
$\implies p = (\frac{a}{b})^2 = \frac{a^2}{b^2}$
|
$\Rightarrow p = (\frac{a}{b})^2 = \frac{a^2}{b^2}$
|
||||||
|
|
||||||
$\implies b^2p = a^2$
|
$\Rightarrow b^2p = a^2$
|
||||||
|
|
||||||
$\implies p \divides a$
|
$\Rightarrow p|a$
|
||||||
|
|
||||||
Let $c \in \N^*$, $a = pc$
|
Let $c \in \N^*$, $a = pc$
|
||||||
|
|
||||||
$\implies b^2 p = (pc)^2=p^2c^2$
|
$\Rightarrow b^2 p = (pc)^2=p^2c^2$
|
||||||
|
|
||||||
$\implies b^2 = pc^2$
|
$\Rightarrow b^2 = pc^2$
|
||||||
|
|
||||||
$\implies p \divides b$
|
$\Rightarrow p|b$
|
||||||
|
|
||||||
$\implies (p \divides b \land p \divides a \land \text{PGCD}(a,b)=1) \implies \bot$
|
$\Rightarrow (p|b \land p|a \land \text{PGCD}(a,b)=1) \Rightarrow \bot$
|
||||||
|
|
||||||
$\implies \sqrt{p} \notin \Q$
|
$\Rightarrow \sqrt{p} \notin \Q$
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
@ -13,7 +13,7 @@ $S = \{a,b,c\}$
|
|||||||
|
|
||||||
\langsubsection{Extensionnalité}{Extensionality}
|
\langsubsection{Extensionnalité}{Extensionality}
|
||||||
|
|
||||||
$\forall A\forall B(\forall X(X \in A \equivalence X \in B) \implies A = B)$
|
$\forall A\forall B(\forall X(X \in A \Leftrightarrow X \in B) \Rightarrow A = B)$
|
||||||
|
|
||||||
\langsubsection{Spécification}{Specification}
|
\langsubsection{Spécification}{Specification}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
@ -32,9 +32,9 @@ Unite all elements of two given sets into one.
|
|||||||
|
|
||||||
$n,m \in \N$
|
$n,m \in \N$
|
||||||
|
|
||||||
$A := \{a_0, \cdots, a_n\}$
|
$A = \{a_0, \cdots, a_n\}$
|
||||||
|
|
||||||
$B := \{b_0, \cdots, b_m\}$
|
$B = \{b_0, \cdots, b_m\}$
|
||||||
|
|
||||||
$A \union B = \{a_0, \cdots, a_n, b_0, \cdots, b_m\}$
|
$A \union B = \{a_0, \cdots, a_n, b_0, \cdots, b_m\}$
|
||||||
|
|
||||||
@ -47,7 +47,7 @@ $A \union B = \{a_0, \cdots, a_n, b_0, \cdots, b_m\}$
|
|||||||
\subsection{Power set}
|
\subsection{Power set}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
|
|
||||||
For a set $S$ such that $\card{S} = n \implies \card{\mathbf{P}(S)} = 2^n$
|
For a set $S$ such that $\card{S} = n \equivalence \card{\mathbf{P}(S)} = 2^n$
|
||||||
|
|
||||||
\langsubsection{Choix}{Choice}
|
\langsubsection{Choix}{Choice}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
@ -77,9 +77,9 @@ If the domain is the same as the codomain then the function is an endormorphsim
|
|||||||
|
|
||||||
\subsection{Notation}
|
\subsection{Notation}
|
||||||
|
|
||||||
$\functiondef{A}{B}$
|
$A \longrightarrow B$
|
||||||
|
|
||||||
$\function{f}{x}{f(x)}$
|
$ x \longrightarrow f(x)$
|
||||||
|
|
||||||
\langsubsection{Injectivité}{Injectivity} \label{definition:injective}
|
\langsubsection{Injectivité}{Injectivity} \label{definition:injective}
|
||||||
|
|
||||||
|
@ -33,8 +33,8 @@ On appellera $(E,\norm{.})$ un \textbf{espace vectoriel normé}.
|
|||||||
$n \in \N^*, E = \R^n$
|
$n \in \N^*, E = \R^n$
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item{$\norm{x}_1 = \sum\limits_{i=0}^n \abs{x_i}$}
|
\item{$\norm{x}_1 = \sum_{i=0}^n \abs{x_i}$}
|
||||||
\item{$\norm{x}_2 = \sqrt{\sum\limits_{i=0}^n x^2_i}$}
|
\item{$\norm{x}_2 = \sqrt{\sum_{i=0}^n x^2_i}$}
|
||||||
\item{$\norm{x}_\infty = \max\{\abs{x_0}, \dots, \abs{x_n}\}$}
|
\item{$\norm{x}_\infty = \max\{\abs{x_0}, \dots, \abs{x_n}\}$}
|
||||||
\item{$E = R_n[X], \norm{P} = \int_0^1 \abs{P(x)}dx$}
|
\item{$E = R_n[X], \norm{P} = \int_0^1 \abs{P(x)}dx$}
|
||||||
\item{$m \in \N^*, E = \mathcal{L}(R^n, R^m), \norm{\phi} = \max\{\norm{\phi(e_i)}_\infty, i \subseteq N^*\}$} ($e_i :=$ base canonique de $\R^n$)
|
\item{$m \in \N^*, E = \mathcal{L}(R^n, R^m), \norm{\phi} = \max\{\norm{\phi(e_i)}_\infty, i \subseteq N^*\}$} ($e_i :=$ base canonique de $\R^n$)
|
||||||
@ -100,7 +100,7 @@ Soit $(E, \norm{.})$ un espace vectoriel normé et \suite{x} une suite d’élé
|
|||||||
Montrer que toute sous-suite de $(x_n)_{n \in \N}$ converge vers $l$.
|
Montrer que toute sous-suite de $(x_n)_{n \in \N}$ converge vers $l$.
|
||||||
\\
|
\\
|
||||||
|
|
||||||
Soit $\epsilon > 0$, comme $\lim\limits_{n \to +\infty} x_n = l$
|
Soit $\epsilon > 0$, comme $\lim_{n \to +\infty} x_n = l$
|
||||||
|
|
||||||
$\implies \exists n_0 \in \N$ tel que $\forall x \ge n_0$, $x_n \in \mathbb{B}(l, \epsilon)$
|
$\implies \exists n_0 \in \N$ tel que $\forall x \ge n_0$, $x_n \in \mathbb{B}(l, \epsilon)$
|
||||||
\\
|
\\
|
||||||
@ -156,7 +156,7 @@ $K$ est compact $\implies K$ possède un point d'accumulation.
|
|||||||
$K$ est compact
|
$K$ est compact
|
||||||
\\
|
\\
|
||||||
|
|
||||||
Soit $\epsilon > 0 \land X = \{x_n, \forall n \in \N \} \land X \subset K$
|
Soit $\epsilon > 0$ \&\& $X = \{x_n, \forall n \in \N \}$ \&\& $X \subset K$
|
||||||
|
|
||||||
$\implies \exists l \in K$ tel que $\lim\limits_{n \to +\infty} x_n = l \in \mathbb{B}(l, \epsilon) \subset K$
|
$\implies \exists l \in K$ tel que $\lim\limits_{n \to +\infty} x_n = l \in \mathbb{B}(l, \epsilon) \subset K$
|
||||||
|
|
||||||
@ -170,7 +170,7 @@ $\implies K$ possède un point d'accumulation
|
|||||||
$K$ possède un point d'accumulation. $\implies K$ est compact.
|
$K$ possède un point d'accumulation. $\implies K$ est compact.
|
||||||
\end{lemme_sq}
|
\end{lemme_sq}
|
||||||
|
|
||||||
Soit $X = \{x_n, \forall n \in \N \} \land X \subset K$
|
Soit $X = \{x_n, \forall n \in \N \}$ \&\& $X \subset K$
|
||||||
|
|
||||||
\paragraph{Si $X$ est fini}
|
\paragraph{Si $X$ est fini}
|
||||||
|
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
digraph denumberabilityIntegers {
|
digraph {
|
||||||
node [shape = plaintext, fontcolor = White, fontsize = 30];
|
node [shape = plaintext, fontcolor = White, fontsize = 30];
|
||||||
rankdir = LR;
|
rankdir = LR;
|
||||||
bgcolor = None;
|
bgcolor = None;
|
||||||
|
@ -1,15 +1,13 @@
|
|||||||
digraph denumberabilityRationals {
|
digraph {
|
||||||
node [shape = plaintext, fontcolor = White, fontsize = 15];
|
node [shape = plaintext, fontcolor = White, fontsize = 30];
|
||||||
rankdir = LR;
|
rankdir = LR;
|
||||||
bgcolor = None;
|
bgcolor = None;
|
||||||
Edge [fontcolor = White, color = White, fontsize = 15];
|
Edge [fontcolor = White, color = White, fontsize = 25];
|
||||||
|
|
||||||
subgraph dots {
|
subgraph dots {
|
||||||
node [label = "..."];
|
node [label = "..."];
|
||||||
d; d2; d3; d4; d5;
|
d; d2; d3; d4; d5;
|
||||||
vd; vd2; vd3; vd4; vd5; vd6;
|
vd; vd2; vd3; vd4; vd5; vd6;
|
||||||
vd5 -> d5;
|
|
||||||
vd -> vd2 -> vd3 -> vd4 -> vd5 -> vd6 [color = None];
|
|
||||||
}
|
}
|
||||||
|
|
||||||
subgraph pos {
|
subgraph pos {
|
||||||
@ -19,30 +17,26 @@ digraph denumberabilityRationals {
|
|||||||
"2/1" -> "3/1" [taillabel = 2];
|
"2/1" -> "3/1" [taillabel = 2];
|
||||||
"3/1" -> "2/2" [taillabel = 3];
|
"3/1" -> "2/2" [taillabel = 3];
|
||||||
"2/2" -> "1/3" [taillabel = 4];
|
"2/2" -> "1/3" [taillabel = 4];
|
||||||
"1/3" -> "1/4" [taillabel = 5];
|
"1/3" -> "2/3" [taillabel = 5];
|
||||||
"1/4" -> "2/3" [taillabel = 6];
|
"2/3" -> "3/2" [taillabel = 6];
|
||||||
"2/3" -> "3/2" [taillabel = 7];
|
"3/2" -> "4/1" [taillabel = 7];
|
||||||
"3/2" -> "4/1" [taillabel = 8];
|
"4/1" -> "5/1" [taillabel = 8];
|
||||||
"4/1" -> "5/1" [taillabel = 9];
|
"5/1" -> "4/2" [taillabel = 9];
|
||||||
"5/1" -> "4/2" [taillabel = 10];
|
"4/2" -> "3/3" [taillabel = 10];
|
||||||
"4/2" -> "3/3" [taillabel = 11];
|
"3/3" -> "2/4" [taillabel = 11];
|
||||||
"3/3" -> "2/4" [taillabel = 12];
|
"2/4" -> "1/4" [taillabel = 12];
|
||||||
"2/4" -> "1/5" [taillabel = 13];
|
"1/4" -> "1/5" [taillabel = 13];
|
||||||
"1/5" -> vd [taillabel = 14];
|
"1/5" -> "2/5" [taillabel = 14];
|
||||||
vd -> "2/5" [taillabel = 15];
|
//"2/5" -> "3/4" [taillabel = 15];
|
||||||
"2/5" -> "3/4" [taillabel = 16];
|
//"3/4" -> "4/3" [taillabel = 16];
|
||||||
"3/4" -> "4/3" [taillabel = 17];
|
"4/3" -> "5/2" [taillabel = 17];
|
||||||
"4/3" -> "5/2" [taillabel = 18];
|
|
||||||
"5/2" -> d [taillabel = 19];
|
"1/5" -> vd [color = None];
|
||||||
d2 -> "5/3" [taillabel = 22];
|
"2/5" -> vd2 [color = None];
|
||||||
"5/3" -> "4/4" [taillabel = 23];
|
"3/5" -> vd3 [color = None];
|
||||||
"4/4" -> "3/5" [taillabel = 24];
|
"4/5" -> vd4 [color = None];
|
||||||
"3/5" -> vd2 [taillabel = 25];
|
"5/5" -> vd5 [color = None];
|
||||||
vd3 -> "4/5" [taillabel = 31];
|
d5 -> vd6 [color = None];
|
||||||
"4/5" -> "5/4" [taillabel = 32];
|
|
||||||
"5/4" -> d3 [taillabel = 33];
|
|
||||||
d4 -> "5/5" [taillabel = 41];
|
|
||||||
"5/5" -> vd4 [taillabel = 42];
|
|
||||||
}
|
}
|
||||||
|
|
||||||
"1/1" -> "2/1" -> "3/1" -> "4/1" -> "5/1" -> d [color = None];
|
"1/1" -> "2/1" -> "3/1" -> "4/1" -> "5/1" -> d [color = None];
|
||||||
@ -50,4 +44,5 @@ digraph denumberabilityRationals {
|
|||||||
"1/3" -> "2/3" -> "3/3" -> "4/3" -> "5/3" -> d3 [color = None];
|
"1/3" -> "2/3" -> "3/3" -> "4/3" -> "5/3" -> d3 [color = None];
|
||||||
"1/4" -> "2/4" -> "3/4" -> "4/4" -> "5/4" -> d4 [color = None];
|
"1/4" -> "2/4" -> "3/4" -> "4/4" -> "5/4" -> d4 [color = None];
|
||||||
"1/5" -> "2/5" -> "3/5" -> "4/5" -> "5/5" -> d5 [color = None];
|
"1/5" -> "2/5" -> "3/5" -> "4/5" -> "5/5" -> d5 [color = None];
|
||||||
|
vd -> vd2 -> vd3 -> vd4 -> vd5 -> vd6 [color = None];
|
||||||
}
|
}
|
||||||
|
10
main.tex
10
main.tex
@ -19,15 +19,15 @@
|
|||||||
%\usepackage{lipsum} % Command to generate temporary dummy text
|
%\usepackage{lipsum} % Command to generate temporary dummy text
|
||||||
\usepackage[ruled,vlined,linesnumbered]{algorithm2e} % Add the algorithm environnement
|
\usepackage[ruled,vlined,linesnumbered]{algorithm2e} % Add the algorithm environnement
|
||||||
\usepackage[codedark]{packages/themes} % Include many colours themes ([default], codedark or dracula)
|
\usepackage[codedark]{packages/themes} % Include many colours themes ([default], codedark or dracula)
|
||||||
\pagecolor{theme_colour_background}
|
\pagecolor{th_colour_bg}
|
||||||
\color{theme_colour_foreground}
|
\color{th_colour_fg}
|
||||||
\usepackage{amsmath} % Provides command to typeset matrices with different delimiters
|
\usepackage{amsmath} % Provides command to typeset matrices with different delimiters
|
||||||
\usepackage{listings} % Add an environnement to highlight code
|
\usepackage{listings} % Add an environnement to highlight code
|
||||||
\usepackage{xargs} % Allow multiple optional parameters parsing
|
\usepackage{xargs} % Allow multiple optional parameters parsing
|
||||||
\usepackage{mdframed} % Fancy rectangles
|
\usepackage{mdframed} % Fancy rectangles
|
||||||
\mdfsetup{linecolor = theme_colour_foreground, innerlinecolor = theme_colour_foreground, %
|
\mdfsetup{linecolor = th_colour_fg, innerlinecolor = th_colour_fg,%
|
||||||
middlelinecolor = theme_colour_foreground, outerlinecolor = theme_colour_foreground, %
|
middlelinecolor = th_colour_fg, outerlinecolor = th_colour_fg,%
|
||||||
backgroundcolor = theme_colour_background, fontcolor = theme_colour_foreground}
|
backgroundcolor = th_colour_bg, fontcolor = th_colour_fg}
|
||||||
\usepackage{packages/macros} % Customs macros
|
\usepackage{packages/macros} % Customs macros
|
||||||
\usepackage{graphicx}
|
\usepackage{graphicx}
|
||||||
\usepackage{makeidx}[intoc] % Make a word index
|
\usepackage{makeidx}[intoc] % Make a word index
|
||||||
|
@ -16,16 +16,16 @@
|
|||||||
\newcommand{\R}{\mathbb{R}} % Real numbers symbol
|
\newcommand{\R}{\mathbb{R}} % Real numbers symbol
|
||||||
\newcommand{\C}{\mathbb{C}} % Complex numbers symbol
|
\newcommand{\C}{\mathbb{C}} % Complex numbers symbol
|
||||||
\newcommand{\Cat}{\mathcal{C}} % Category
|
\newcommand{\Cat}{\mathcal{C}} % Category
|
||||||
\newcommand{\Set}{\mathbf{Set}} % Set category
|
|
||||||
\newcommand{\K}{\mathbb{K}} % Corps
|
\newcommand{\K}{\mathbb{K}} % Corps
|
||||||
\newcommand{\Hq}{\mathbb{H}} % Quaternions numbers symbol
|
\newcommand{\Hq}{\mathbb{H}} % Quaternions numbers symbol
|
||||||
\newcommand{\Ot}{\mathbb{O}} % Octonions numbers symbol
|
\newcommand{\Ot}{\mathbb{O}} % Octonions numbers symbol
|
||||||
\newcommand{\Se}{\mathbb{S}} % Sedenions numbers symbol
|
\newcommand{\Se}{\mathbb{S}} % Sedenions numbers symbol
|
||||||
\newcommand{\Pn}{\mathbb{P}} % Sets of all the prime numbers
|
\newcommand{\Pn}{\mathbb{P}} % Sets of all the prime numbers
|
||||||
\newcommand{\false}{F} % New symbol for false value
|
\newcommand{\false}{{\color{th_colour_red}F}} % New symbol for false value
|
||||||
\newcommand{\true}{V} % New symbol for true value
|
\newcommand{\true}{{\color{th_colour_green}V}} % New symbol for true value
|
||||||
|
%\newcommand{\false}{F} % New symbol for false value
|
||||||
|
%\newcommand{\true}{V} % New symbol for true value
|
||||||
\DeclareMathOperator{\Rel}{\mathcal{R}} % New symbol for binary relations
|
\DeclareMathOperator{\Rel}{\mathcal{R}} % New symbol for binary relations
|
||||||
\DeclareMathOperator{\composes}{\circ} % New symbol composing morphisms
|
|
||||||
\DeclarePairedDelimiter{\abs}{|}{|}
|
\DeclarePairedDelimiter{\abs}{|}{|}
|
||||||
\DeclarePairedDelimiter{\card}{|}{|}
|
\DeclarePairedDelimiter{\card}{|}{|}
|
||||||
\DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor}
|
\DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor}
|
||||||
@ -35,14 +35,10 @@
|
|||||||
\newtheorem{theorem}{\lang{Théorème}{Theoreme}}
|
\newtheorem{theorem}{\lang{Théorème}{Theoreme}}
|
||||||
\newtheorem{lemme}{Lemme}
|
\newtheorem{lemme}{Lemme}
|
||||||
\newcommandx{\suite}[3][1=n,2=n]{$(#3_{#1})_{#2 \in \N}$}
|
\newcommandx{\suite}[3][1=n,2=n]{$(#3_{#1})_{#2 \in \N}$}
|
||||||
\newcommand{\innerproduct}[2]{\langle #1, #2 \rangle}
|
|
||||||
\newenvironment{definition_sq}{\begin{mdframed}\begin{definition}}{\end{definition}\end{mdframed}}
|
\newenvironment{definition_sq}{\begin{mdframed}\begin{definition}}{\end{definition}\end{mdframed}}
|
||||||
\newenvironment{theorem_sq}{\begin{mdframed}\begin{theorem}}{\end{theorem}\end{mdframed}}
|
\newenvironment{theorem_sq}{\begin{mdframed}\begin{theorem}}{\end{theorem}\end{mdframed}}
|
||||||
\newenvironment{lemme_sq}{\begin{mdframed}\begin{lemme}}{\end{lemme}\end{mdframed}}
|
\newenvironment{lemme_sq}{\begin{mdframed}\begin{lemme}}{\end{lemme}\end{mdframed}}
|
||||||
\newcommand{\norm}[1]{\lVert#1\rVert}
|
\newcommand{\norm}[1]{\|#1\|}
|
||||||
\newcommand{\Norm}[1]{\lVert #1\rVert}
|
|
||||||
\newcommand{\powerset}[1]{\mathcal{P}(#1)} % Power set
|
|
||||||
\newcommand{\converges}{\rightarrow}
|
|
||||||
\newcommand{\equivalence}{\Leftrightarrow}
|
\newcommand{\equivalence}{\Leftrightarrow}
|
||||||
\renewcommand{\implies}{\Longrightarrow}
|
\renewcommand{\implies}{\Longrightarrow}
|
||||||
\newcommand{\Limplies}{\Longleftarrow}
|
\newcommand{\Limplies}{\Longleftarrow}
|
||||||
@ -50,16 +46,10 @@
|
|||||||
\newcommand{\Limpliespart}{\fbox{$\Limplies$}}
|
\newcommand{\Limpliespart}{\fbox{$\Limplies$}}
|
||||||
\DeclareMathOperator{\divides}{\mid}
|
\DeclareMathOperator{\divides}{\mid}
|
||||||
\DeclareMathOperator{\suchas}{\text{\lang{tel que}{such as}}}
|
\DeclareMathOperator{\suchas}{\text{\lang{tel que}{such as}}}
|
||||||
\renewcommand{\function}[3]{#1 \colon #2 \longrightarrow #3}
|
\renewcommand{\function}[3]{#1 : #2 \longrightarrow #3}
|
||||||
\newcommand{\functiondef}[2]{\hspace{15pt}#1 \longmapsto #2}
|
\newcommand{\functiondef}[2]{\hspace{15pt}#1 \longmapsto #2}
|
||||||
\newcommand{\otherwise}{\text{\lang{Sinon}{Otherwise}}}
|
\newcommand{\otherwise}{\text{\lang{Sinon}{Otherwise}}}
|
||||||
\DeclareMathOperator{\union}{\cup}
|
\DeclareMathOperator{\union}{\cup}
|
||||||
\DeclareMathOperator{\Union}{\bigcup}
|
|
||||||
\DeclareMathOperator{\intersection}{\cap}
|
|
||||||
\DeclareMathOperator{\Intersection}{\bigcap}
|
|
||||||
\DeclareMathOperator{\cartesianProduct}{\times}
|
|
||||||
\DeclareMathOperator{\CartesianProduct}{\bigtimes}
|
|
||||||
\newcommand{\discreteInterval}[1]{[\![#1]\!]}
|
|
||||||
|
|
||||||
\renewcommand{\smallskip}{\vspace{3pt}}
|
\renewcommand{\smallskip}{\vspace{3pt}}
|
||||||
\renewcommand{\medskip}{\vspace{6pt}}
|
\renewcommand{\medskip}{\vspace{6pt}}
|
||||||
|
@ -4,44 +4,44 @@
|
|||||||
\RequirePackage{xcolor}
|
\RequirePackage{xcolor}
|
||||||
|
|
||||||
\DeclareOption{default}{\OptionNotUsed}
|
\DeclareOption{default}{\OptionNotUsed}
|
||||||
\definecolor{theme_colour_background} {RGB} {255, 255, 255}
|
\definecolor{th_colour_bg} {RGB} {255, 255, 255}
|
||||||
\definecolor{theme_colour_foreground} {RGB} {0, 0, 0 }
|
\definecolor{th_colour_fg} {RGB} {0, 0, 0 }
|
||||||
\definecolor{theme_colour_cl} {RGB} {68, 71, 90 }
|
\definecolor{th_colour_cl} {RGB} {68, 71, 90 }
|
||||||
\definecolor{theme_colour_comment} {RGB} {98, 114, 164}
|
\definecolor{th_colour_comment} {RGB} {98, 114, 164}
|
||||||
\definecolor{theme_colour_cyan} {RGB} {139, 233, 253}
|
\definecolor{th_colour_cyan} {RGB} {139, 233, 253}
|
||||||
\definecolor{theme_colour_green} {RGB} {0, 255, 0 }
|
\definecolor{th_colour_green} {RGB} {0, 255, 0 }
|
||||||
\definecolor{theme_colour_orange} {RGB} {255, 184, 108}
|
\definecolor{th_colour_orange} {RGB} {255, 184, 108}
|
||||||
\definecolor{theme_colour_pink} {RGB} {255, 121, 198}
|
\definecolor{th_colour_pink} {RGB} {255, 121, 198}
|
||||||
\definecolor{theme_colour_purple} {RGB} {189, 147, 249}
|
\definecolor{th_colour_purple} {RGB} {189, 147, 249}
|
||||||
\definecolor{theme_colour_red} {RGB} {255, 0, 0 }
|
\definecolor{th_colour_red} {RGB} {255, 0, 0 }
|
||||||
\definecolor{theme_colour_yellow} {RGB} {255, 255, 0 }
|
\definecolor{th_colour_yellow} {RGB} {255, 255, 0 }
|
||||||
|
|
||||||
\DeclareOption{codedark}{
|
\DeclareOption{codedark}{
|
||||||
\definecolor{theme_colour_background} {HTML} {222324}
|
\definecolor{th_colour_bg} {HTML} {222324}
|
||||||
\definecolor{theme_colour_foreground} {HTML} {FFFFFF}
|
\definecolor{th_colour_fg} {HTML} {FFFFFF}
|
||||||
\definecolor{theme_colour_cl} {RGB} {68, 71, 90 }
|
\definecolor{th_colour_cl} {RGB} {68, 71, 90 }
|
||||||
\definecolor{theme_colour_comment} {RGB} {98, 114, 164}
|
\definecolor{th_colour_comment} {RGB} {98, 114, 164}
|
||||||
\definecolor{theme_colour_cyan} {RGB} {139, 233, 253}
|
\definecolor{th_colour_cyan} {RGB} {139, 233, 253}
|
||||||
\definecolor{theme_colour_green} {RGB} {80, 250, 123}
|
\definecolor{th_colour_green} {RGB} {80, 250, 123}
|
||||||
\definecolor{theme_colour_orange} {RGB} {255, 184, 108}
|
\definecolor{th_colour_orange} {RGB} {255, 184, 108}
|
||||||
\definecolor{theme_colour_pink} {RGB} {255, 121, 198}
|
\definecolor{th_colour_pink} {RGB} {255, 121, 198}
|
||||||
\definecolor{theme_colour_purple} {RGB} {189, 147, 249}
|
\definecolor{th_colour_purple} {RGB} {189, 147, 249}
|
||||||
\definecolor{theme_colour_red} {RGB} {255, 85, 85 }
|
\definecolor{th_colour_red} {RGB} {255, 85, 85 }
|
||||||
\definecolor{theme_colour_yellow} {RGB} {241, 250, 140}
|
\definecolor{th_colour_yellow} {RGB} {241, 250, 140}
|
||||||
}
|
}
|
||||||
|
|
||||||
\DeclareOption{dracula}{
|
\DeclareOption{dracula}{
|
||||||
\definecolor{theme_colour_background} {RGB} {40, 42, 54 }
|
\definecolor{th_colour_bg} {RGB} {40, 42, 54 }
|
||||||
\definecolor{theme_colour_foreground} {RGB} {248, 248, 242}
|
\definecolor{th_colour_fg} {RGB} {248, 248, 242}
|
||||||
\definecolor{theme_colour_cl} {RGB} {68, 71, 90 }
|
\definecolor{th_colour_cl} {RGB} {68, 71, 90 }
|
||||||
\definecolor{theme_colour_comment} {RGB} {98, 114, 164}
|
\definecolor{th_colour_comment} {RGB} {98, 114, 164}
|
||||||
\definecolor{theme_colour_cyan} {RGB} {139, 233, 253}
|
\definecolor{th_colour_cyan} {RGB} {139, 233, 253}
|
||||||
\definecolor{theme_colour_green} {RGB} {80, 250, 123}
|
\definecolor{th_colour_green} {RGB} {80, 250, 123}
|
||||||
\definecolor{theme_colour_orange} {RGB} {255, 184, 108}
|
\definecolor{th_colour_orange} {RGB} {255, 184, 108}
|
||||||
\definecolor{theme_colour_pink} {RGB} {255, 121, 198}
|
\definecolor{th_colour_pink} {RGB} {255, 121, 198}
|
||||||
\definecolor{theme_colour_purple} {RGB} {189, 147, 249}
|
\definecolor{th_colour_purple} {RGB} {189, 147, 249}
|
||||||
\definecolor{theme_colour_red} {RGB} {255, 85, 85 }
|
\definecolor{th_colour_red} {RGB} {255, 85, 85 }
|
||||||
\definecolor{theme_colour_yellow} {RGB} {241, 250, 140}
|
\definecolor{th_colour_yellow} {RGB} {241, 250, 140}
|
||||||
}
|
}
|
||||||
|
|
||||||
\ProcessOptions\relax
|
\ProcessOptions\relax
|
||||||
|
Loading…
x
Reference in New Issue
Block a user