Compare commits

..

No commits in common. "d0c9dab3300d186601ee338f05caed9399c5b1ae" and "c8b77b243593469506a50ef10e41a027e3d38ccd" have entirely different histories.

10 changed files with 111 additions and 317 deletions

View File

@ -1,9 +1,9 @@
FROM alpine:3.20.3 FROM alpine:3.20.2
RUN apk add --no-cache \ RUN apk add --no-cache \
make=4.4.1-r2 \ make=4.4.1-r2 \
graphviz=9.0.0-r2 \ graphviz=9.0.0-r2 \
texlive-xetex=20240210.69778-r4 \ texlive-xetex=20240210.69778-r3 \
texmf-dist-langfrench=2024.0-r5 \ texmf-dist-langfrench=2024.0-r5 \
texmf-dist-latexextra=2024.0-r5 \ texmf-dist-latexextra=2024.0-r5 \
texmf-dist-bibtexextra=2024.0-r5 \ texmf-dist-bibtexextra=2024.0-r5 \

View File

@ -6,19 +6,19 @@
\subsection{Magma} \label{definition:magma} \subsection{Magma} \label{definition:magma}
Soit un ensemble $S$ avec une loi de composition interne $(\star)$ notée $(S,\star)$ tel que $\forall(a,b) \in S, a \star b \in S$. Soit une structure $S$ avec une loi de composition interne $(+)$ notée $(S,+)$ tel que $\forall(a,b) \in S, a + b \in S$.
\langsubsection{Magma unital}{Unital magma} \label{definition:unital_magma} \langsubsection{Magma unital}{Unital magma} \label{definition:unital_magma}
Soit un magma \ref{definition:magma} $(S,\star)$ untial en $0_e$ tel que $\exists 0_e \in S, \forall a \in S, 0_e \star a = a$. Soit un magma \ref{definition:magma} $(S,+)$ untial en $0_e$ tel que $\exists 0_e \in S, \forall a \in S, 0_e + a = a$.
\subsection{Monoïd} \label{definition:monoid} \subsection{Monoïd} \label{definition:monoid}
Soit un magma unital \ref{definition:unital_magma} $(S,\star)$ dont la loi de composition est associative \ref{definition:associativity}. Soit un magma unital \ref{definition:unital_magma} $(S,+)$ dont la loi de composition est associative \ref{definition:associativity}.
\langsubsection{Groupe}{Group} \label{definition:group} \langsubsection{Groupe}{Group} \label{definition:group}
Soit un monoïd \ref{definition:monoid} $(G,\star)$ ayant un élément inverse tel que $\forall a \in G, \exists a^{-1} \in G, a \star a^{-1} = 0_e$. Soit un monoid \ref{definition:monoid} $(G,+)$ ayant un élément inverse tel que $\forall a \in G, \exists a^{-1} \in G, a + a^{-1} = 0_e$.
\langsubsubsection{Groupe abélien}{Abelian group} \label{definition:abelian_group} \langsubsubsection{Groupe abélien}{Abelian group} \label{definition:abelian_group}
@ -26,17 +26,13 @@ Un groupe abélien est un groupe \ref{definition:group} dont la loi de compositi
\langsubsection{Corps}{Field} \label{definition:field} \langsubsection{Corps}{Field} \label{definition:field}
Soit une structure $F$ avec deux lois de composition interne $(+)$ et $(\cartesianProduct)$ notée $(F,+,\cartesianProduct)$. Soit une structure $F$ avec deux lois de composition interne $(+)$ et $(\times)$ notée $(F,+,\times)$.
\begin{itemize} \begin{itemize}
\item{$(F,+)$ est un groupe \ref{definition:group} unital en $0_e$} \item{$(F,+)$ est un groupe \ref{definition:group} unital en $0_e$}
\item{$(F\backslash\{0_e\},\cartesianProduct)$ est un groupe \ref{definition:group}} \item{$(F\backslash\{0_e\},\times)$ est un groupe \ref{definition:group}}
\end{itemize} \end{itemize}
\langsubsubsection{Corps abélien}{Abelian field} \label{definition:abelian_field}
Un corps abélien est un corps \ref{definition:field} dont la loi de composition est commutatif \ref{definition:commutativity}.
\langsubsection{Anneau}{Ring} \label{definition:ring} \langsubsection{Anneau}{Ring} \label{definition:ring}
%TODO Complete subsection %TODO Complete subsection
@ -56,11 +52,11 @@ Un matrice est une structure qui permet de regrouper plusieurs éléments d'un c
\subsection{Trace} \subsection{Trace}
%TODO Complete subsection %TODO Complete subsection
$\forall A \in \mathcal{M}_{n}, tr(A)=\sum\limits_{k=0}^na_{kk}$ $\forall A \in \mathcal{M}_{n}, tr(A)=\sum_{k=0}^na_{kk}$
$tr\in\mathcal{L}(\mathcal{M}_n(\K),\K)$ $tr\in\mathcal{L}(\mathcal{M}_n(\K),\K)$
$\forall(A,B)\in\mathcal{M}_{n,p}(\K)\cartesianProduct\mathcal{M}_{p,n}(\K), tr(AB) = tr(BA)$ $\forall(A,B)\in\mathcal{M}_{n,p}(\K)\times\mathcal{M}_{p,n}(\K), tr(AB) = tr(BA)$
\langsubsection{Valeurs propres}{Eigenvalues} \langsubsection{Valeurs propres}{Eigenvalues}
%TODO Complete subsection %TODO Complete subsection
@ -80,12 +76,12 @@ $Eigenvalues = m \pm \sqrt{m^2-det(A)}$
\langsubsection{Déterminant}{Determinant} \langsubsection{Déterminant}{Determinant}
%%TODO Complete subsection %%TODO Complete subsection
$\function{D}{\mathcal{M}_{m\cartesianProduct n}(\R)}{R}$ $\function{D}{\mathcal{M}_{m\times n}(\R)}{R}$
\langsubsubsection{Axiomes}{Axioms} \langsubsubsection{Axiomes}{Axioms}
%%TODO Complete subsubsection %%TODO Complete subsubsection
$\forall M \in \mathcal{M}_{m\cartesianProduct n}$ $\forall M \in \mathcal{M}_{m\times n}$
\begin{itemize} \begin{itemize}
\item{$\forall \lambda \in \K, D(\lambda M) = \lambda D(M)$} \item{$\forall \lambda \in \K, D(\lambda M) = \lambda D(M)$}
\end{itemize} \end{itemize}
@ -190,37 +186,6 @@ Et vérifiant $\forall(\alpha,\beta) \in \K, \forall(a,b,c) \in E$
\item{Distributivité (gauche et droite) $*$ de $\K \Leftrightarrow a(\alpha*\beta)+(\alpha*\beta)a+\alpha(\beta a)$} \item{Distributivité (gauche et droite) $*$ de $\K \Leftrightarrow a(\alpha*\beta)+(\alpha*\beta)a+\alpha(\beta a)$}
\end{itemize} \end{itemize}
\langsubsection{Famille libre}{Free family} \label{definition:vector_space_free_family}
\begin{definition_sq}
Une famille \suite{e} est dite \textbf{libre} si
$$\forall i \in \discreteInterval{1, n}, \lambda_i \in K, \sum\limits_{i = 1}^n \lambda_i e_i = 0 \implies \lambda_i = 0$$
\end{definition_sq}
\langsubsection{Famille génératrice}{Generating family} \label{definition:vector_space_generating_family}
\begin{definition_sq}
Une famille \suite{e} est dite \textbf{génératrice} de $E$ si
$$\forall v \in E, \exists \lambda \in K^n, \sum\limits_{i=1}^n \lambda_i e_i = v$$
\end{definition_sq}
\langsubsection{Bases}{Basis} \label{definition:vector_space_basis}
\begin{definition_sq}
Une famille est dite une \textbf{base} de $E$ si elle est libre \ref{definition:vector_space_free_family} et génératrice \ref{definition:vector_space_generating_family} $\equivalence \forall v \in E, \exists! \lambda \in K^n, \sum\limits_{i=1}^n \lambda_i e_i = v$
\end{definition_sq}
\subsection{Dimension} \label{definition:vector_space_dimension}
%TODO Complete subsection
\langsubsubsection{Rang}{Rank} \label{definition:vector_space_rank}
%TODO Complete subsubsection
\begin{theorem_sq} \label{theorem:vector_space_rank}
Soit $E$ et $G$ $K$-e.v \ref{definition:sub_vector_space} et $\function{\phi}{E}{F}$.
$\dim E = \dim \ker(\phi) + \dim im(\phi) = \dim \ker(\phi) = rg(\phi)$
\end{theorem_sq}
\langsubsection{Sous-espaces vectoriels}{Sub vector spaces} \label{definition:sub_vector_space} \langsubsection{Sous-espaces vectoriels}{Sub vector spaces} \label{definition:sub_vector_space}
%TODO Complete subsection %TODO Complete subsection
@ -266,161 +231,3 @@ $\implies F \subset G \lor G \subset F$
\end{proof} \end{proof}
\langsubsection{Application linéaire}{Linear maps} \label{definition:linearity}
Une application linéaire est un morphisme \ref{definition:morphism}
appliqué à la catégorie \ref{definition:category}
des espaces vectoriels \ref{definition:vector_space}.
\langsubsubsection{Axiomes}{Axioms}
Given $f: \mathbb{K} \rightarrow \mathbb{K}$
\begin{itemize}
\item{Additivity: $\forall(x,y) \in \mathbb{K}, f(x+y)=f(x)+f(y)$}
\item{Homogeneity: $\forall(a,x) \in \mathbb{K}, f(ax)=af(x)$}
\item{Or (a faster way): $\forall(a,x,y) \in \mathbb{K}, f(x + ay) = f(x) + af(y)$}
\end{itemize}
\langsubsection{Forme bilinéaire}{Bilinear form} \label{definition:bilinear_form}
\langsubsubsection{Axiomes}{Axioms}
Une forme bilinéaire est une fonction $\function{B}{E \cartesianProduct E}{K}$ sur un $\K$-espace vectoriel $E$ qui est linéaire sur les deux arguments tel qui respectes les axiomes suivants :
\begin{itemize}
\item{$\forall u,v,w \in E, B(u + v,w) = B(u,w) + B(v,w)$}
\item{$\forall u,v \in E, \forall a \in K, B(au,w) = aB(u,w)$}
\item{$\forall u,v,w \in E, B(u,w + v) = B(u,v) + B(u,w)$}
\item{$\forall u,v \in E, \forall a \in K, B(u,aw) = aB(u,w)$}
\end{itemize}
\langsubsection{Produit scalaire}{Inner product}
\langsubsubsection{Produit scalaire réel}{Real inner product}
\langsubsubsubsection{Axiomes}{Axioms}
Un produit scalaire notée $\innerproduct{-}{-}$ sur un $\R$-espace vectoriel $E$ est une forme bilinéaire \ref{definition:bilinear_form} qui respectes les axiomes suivants :
\begin{itemize}
\item{Symétrie: $\forall(x,y) \in E, \innerproduct{x}{y} = \innerproduct{y}{x}$}
\item{Non-dégénérescence: $\forall x \in E, \innerproduct{x}{x} = 0 \implies x = 0$}
\end{itemize}
\langsubsection{Norme Réel}{Real norm}
\langsubsubsection{Axiomes}{Axioms}
Une norme notée $\norm{.}_E$ sur un $\R$-espace vectoriel $E$ est une application $\function{\norm{.}}{E}{R_+}$ qui respectes les axiomes suivants :
\begin{itemize}
\item{Séparation: $\forall x \in E, \norm{x} = 0 \implies x = 0$}
\item{Homogénéité: $\forall x \in E, \forall \lambda \in \R \norm{\lambda x} = \abs{\lambda}\norm{x}$}
\item{Inégalité triangulaire: $\forall x,y \in E, \norm{x + y} \le \norm{x} + \norm{y}$}
\end{itemize}
\langsubsection{Espace pré-hilbertien}{Pre-hilbertian Space}
A $\K$-espace vectoriel muni d'un produit scalaire est appelé un espace pré-hilbertien.
\langsubsection{Espace Euclidien}{Euclidian Space}
Un espace euclidien est une espace pré-hilbertien réel à dimension finie.
\pagebreak
\section{Devoir Maison 1 : Algèbre multilinéaire}
\section{Exercice 1}
Soit $(E,\innerproduct{.}{.})$ un espace euclidien. On définit
$$\function{i}{E \setminus \{0\}}{E \setminus \{0\}}$$
$$\functiondef{x}{\frac{x}{\norm{x}^2}}$$
qu'on appelle \textit{inversion} de centre 0 et de rapport 1.
\begin{enumerate}
\item{Montrer que $i$ est une bijection de $E \setminus \{0\}$ sur lui-même, vérifiant $i \composes i = id_E$}
\begin{proof}\par
Si $i$ est une bijection de $E$ alors il existe une fonction réciproque (ou inverse) $i^{-1}$ telle que $i \composes i^{-1} = id_E$, or $i$ est défini comme son propre inverse. Donc il suffit d'évaluer $i$ avec lui-même pour terminer la preuve.
$$i \composes i = \frac{\frac{x}{\norm{x}^2}}{\norm{\frac{x}{\norm{x}^2}}^2} = \frac{\frac{x}{\norm{x}^2}}{\frac{\norm{x}^2}{\norm{x}^4}} = \frac{\norm{x}^2 x}{\norm{x}^2} = x = id_E$$
\end{proof}
\item{Montrer $$\forall x,y \in E \setminus \{0\}, \frac{\innerproduct{i(x)}{i(y)}}{\norm{i(x)}\norm{i(y)}} = \frac{\innerproduct{x}{y}}{\norm{x}\norm{y}}$$ On dit que $i$ est une application \textit{conforme}.}
\begin{proof}\par
Soit $x,y \in E \setminus \{0\}$
$$\frac{\innerproduct{i(x)}{i(y)}}{\norm{i(x)}\norm{i(y)}} = \frac{\innerproduct{\frac{x}{\norm{x}^2}}{\frac{y}{\norm{y}^2}}}{\norm{\frac{x}{\norm{x}^2}}\norm{\frac{y}{\norm{y}^2}}} = \frac{\frac{\innerproduct{x}{y}}{\norm{x}^2\norm{y}^2}}{\frac{\norm{x}\norm{y}}{\norm{x}^2\norm{y}^2}} = \frac{\innerproduct{x}{y}}{\norm{x}\norm{y}}$$
\end{proof}
\item{Démontrer que $$\forall x,y \in E \setminus \{0\}, \norm{i(x) - i(y)} = \frac{\norm{x - y}}{\norm{x}\norm{y}}$$}
\begin{proof}\par
Soit $x,y \in E \setminus \{0\}$
$$\norm{i(x) - i(y)} = \norm{\frac{x}{\norm{x}^2} - \frac{y}{\norm{y}^2}} = \norm{\frac{\norm{y}^2 x - \norm{x}^2 y}{\norm{x}^2\norm{y}^2}} = \frac{\norm{\norm{y}^2 x - \norm{x}^2 y}}{\norm{x}^2\norm{y}^2} = \frac{\sqrt{\innerproduct{\norm{y}^2 x - \norm{x}^2 y}{\norm{y}^2 x - \norm{x}^2 y}}}{\norm{x}^2\norm{y}^2}$$
$$= \frac{\sqrt{\innerproduct{\norm{y}^2 x}{\norm{y}^2 x} - 2 \innerproduct{\norm{y}^2 x}{\norm{x}^2 y} - \innerproduct{\norm{x}^2 y}{\norm{x}^2 y}}}{\norm{x}^2\norm{y}^2} = \frac{\sqrt{\norm{y}^4 \norm{x}^2 - 2\norm{y}^2 \norm{x}^2 \innerproduct{x}{y} - \norm{x}^4\norm{y}^2}}{\norm{x}^2\norm{y}^2}$$
$$= \frac{\sqrt{\norm{y}^2 \norm{x}^2 (\norm{y}^2 - 2 \innerproduct{x}{y} - \norm{x}^2)}}{\norm{x}^2\norm{y}^2} = \frac{\norm{x}\norm{y}\sqrt{\innerproduct{x - y}{x - y}}}{\norm{x}^2\norm{y}^2} = \frac{\norm{x - y}}{\norm{x}\norm{y}}$$
\end{proof}
\item{En déduire que pour tous $x,y,z \in E \setminus \{0\}$, on a $$\norm{x}\norm{y - z} \le \norm{y}\norm{x - z} + \norm{z}\norm{x - y}$$}
\begin{proof}\par
Posons $a,b \in E \setminus \{0\}$ tel que $a := i(y) - i(x)$ et $b := i(x) - i(z)$, puis utilisons l'inégalité triangulaire $\norm{a + b} \le \norm{a} + \norm{b}$ et développons.
$$\norm{(i(y) - i(x)) + (i(x) - i(z))} = \norm{i(y) - i(z)} \le \norm{i(x) - i(z)} + \norm{i(x) - i(y)}$$
Par le résultat de (3).
$$\frac{\norm{y - z}}{\norm{y}\norm{z}} \le \frac{\norm{x - z}}{\norm{x}\norm{z}} + \frac{\norm{x - y}}{\norm{x}\norm{y}}$$
En multipliant par $\norm{x}\norm{y}\norm{z}$
$$\norm{x}\norm{y - z} \le \norm{y}\norm{x - z} + \norm{z}\norm{x - y}$$
\end{proof}
\item{En déduire que pour tous $a,b,c,d \in E \setminus \{0\}$, on a $$\norm{a - c}\norm{b - d} \le \norm{a - b}\norm{c - d} + \norm{a - d}\norm{b - c}$$ C'est l'\textit{inégalité de Ptolémée}.}
\bigskip
Pour cette preuve nous aurons besoin de ce lemme :
\begin{lemme_sq} \label{norm_diff_symetry}
$\forall (e,f) \in E, \norm{e - f} = \norm{f - e}$
\begin{proof}\par
Soit $E$ un $\K$-espace vectoriel et soit $e,f \in E$.
Comme $\exists (-1_K) \in \K(+, \cartesianProduct) \suchas (-1_K) \cartesianProduct (-1_K) = 1_K$.
$$\norm{e - f} = \norm{-1_\K(f - e)} = \abs{-1_\K}\norm{f - e} = \norm{f - e}$$
\end{proof}
\end{lemme_sq}
\begin{proof}\par
Soit $a,b,c,d \in E$.
Comme $E$ est un espace vectoriel et donc un groupe par $E(+)$.
Posons $x,y,z \in E$ tel que $x := a - c$, $y := a - b$ et $z := a - d$.
Ainsi, par le résultat (4).
$$\norm{x}\norm{y - z} \le \norm{y}\norm{x - z} + \norm{z}\norm{x - y}$$
Par le lemme (\ref{norm_diff_symetry}).
$$\norm{x}\norm{z - y} \le \norm{y}\norm{z - x} + \norm{z}\norm{y - x}$$
En développant $x$, $y$ et $z$ on obtient
$$\norm{a - c}\norm{(a - d) - (a - b)} \le \norm{a - b}\norm{(a - d) - (a - c)} + \norm{a - d}\norm{(a - b) - (a - c)}$$
$$\norm{a - c}\norm{b - d} \le \norm{a - b}\norm{c - d} + \norm{a - d}\norm{b - c}$$
\end{proof}
Soit $u \in E$ tel que $\norm{u} = 1$ et soit $\alpha \ne 0$. Considérons $H = \{ x \in E | \innerproduct{x}{u} = \alpha \}$. C'est un hyperplan affine de $E$.
\item{Justifier que $0 \notin H$. En utilisant la question 3, montrer alors que $i(H) = S \setminus \{0\}$, où $$S = \lbrace x \in E | \Norm{x - \frac{1}{2\alpha}u} = \frac{1}{2\abs{\alpha}} \rbrace$$}
% TODO Complete 6.
Soient $a \in E$ et $R > 0$. On note $S(a,R) = \{ x \in E | \norm{x - a} = R\}$ la sphère de centre $a$ et de rayon $R$.
\item{On suppose que $\norm{a} \ne R$. Montrer que $0 \notin S(a,R)$ et que $$ i(S(a,R)) = S(\frac{a}{\norm{a}^2 - R^2}, \frac{R}{\abs{\norm{a}^2 - R^2}})$$}
% TODO Complete 7.
\end{enumerate}

View File

@ -94,7 +94,7 @@ Il existe toujours un élément minimum pour n'importe quel sous-ensemble de $\N
\langsection{Construction des entiers relatifs $(\Z)$}{Construction of relative numbers} \langsection{Construction des entiers relatifs $(\Z)$}{Construction of relative numbers}
%TODO Complete section %TODO Complete section
$\Z := \{\dots,-3,-2,-1,0,1,2,3,\dots\} = \Union_{n \in \N} n \union \Union_{n \in \N^*} -n$ $\Z := \{\dots,-3,-2,-1,0,1,2,3,\dots\}$
\langsubsection{Relations binaries}{Binary relations} \langsubsection{Relations binaries}{Binary relations}
%TODO Complete subsection %TODO Complete subsection
@ -191,7 +191,7 @@ $i^2 = -1$
\begin{tabular}{|c||c|c|} \begin{tabular}{|c||c|c|}
\hline \hline
$\cartesianProduct$ & 1 & i \\ & 1 & i \\
\hline \hline
\hline \hline
1 & 1 & i \\ 1 & 1 & i \\
@ -229,7 +229,7 @@ Source: \citeannexes{wikipedia_quaternion}
\begin{tabular}{|c||c|c|c|c|} \begin{tabular}{|c||c|c|c|c|}
\hline \hline
$\cartesianProduct$ & 1 & i & j & k \\ & 1 & i & j & k \\
\hline \hline
\hline \hline
1 & 1 & i & j & k \\ 1 & 1 & i & j & k \\
@ -251,7 +251,7 @@ Source: \citeannexes{wikipedia_octonion}
\begin{tabular}{|c||c|c|c|c|c|c|c|c|} \begin{tabular}{|c||c|c|c|c|c|c|c|c|}
\hline \hline
$\cartesianProduct$ & $e_0$ & $e_1$ & $e_2$ & $e_3$ & $e_4$ & $e_5$ & $e_6$ & $e_7$ \\ $e_i/e_j $ & $e_0$ & $e_1$ & $e_2$ & $e_3$ & $e_4$ & $e_5$ & $e_6$ & $e_7$ \\
\hline \hline
\hline \hline
$e_0$ & $e_0$ & $e_1$ & $e_2$ & $e_3$ & $e_4$ & $e_5$ & $e_6$ & $e_7$ \\ $e_0$ & $e_0$ & $e_1$ & $e_2$ & $e_3$ & $e_4$ & $e_5$ & $e_6$ & $e_7$ \\
@ -289,7 +289,7 @@ Source: \citeannexes{wikipedia_sedenion}
\begin{tabular}{|c|c|c|c|} \begin{tabular}{|c|c|c|c|}
\hline \hline
$\cartesianProduct$ & i & j & k \\ & i & j & k \\
\hline \hline
i & -1 & k & -j \\ i & -1 & k & -j \\
\hline \hline
@ -324,13 +324,15 @@ $\Pn = \{p | p \in \N^* \land p \text{ est premier}\} = p_0, p_1, \dots p_{n-1},
$\omega = (\prod_{p\in \Pn} p) + 1$ $\omega = (\prod_{p\in \Pn} p) + 1$
$\implies \forall p \in \Pn$, $\lnot(p \divides \omega)$ $\forall p \in \Pn, \lnot(\omega \div p)$
$\implies (\omega \notin \Pn \land \omega \in \Pn) \implies \bot$ $\omega \notin \Pn \land \omega \in \Pn$
$\implies \card{P} = \infty$ $\rightarrow\leftarrow$
\end{proof} $\implies |P| = \infty$
Il existe une infinité de nombre premiers.
\langsubsection{Irrationnalité}{Irrationality} \langsubsection{Irrationnalité}{Irrationality}
@ -349,22 +351,22 @@ By contradiction let's assume $\sqrt{p} \in \Q$
$a \in \Z, b \in \N^*, \text{PGCD}(a,b) = 1, \sqrt{p} = \frac{a}{b}$ $a \in \Z, b \in \N^*, \text{PGCD}(a,b) = 1, \sqrt{p} = \frac{a}{b}$
$\implies p = (\frac{a}{b})^2 = \frac{a^2}{b^2}$ $\Rightarrow p = (\frac{a}{b})^2 = \frac{a^2}{b^2}$
$\implies b^2p = a^2$ $\Rightarrow b^2p = a^2$
$\implies p \divides a$ $\Rightarrow p|a$
Let $c \in \N^*$, $a = pc$ Let $c \in \N^*$, $a = pc$
$\implies b^2 p = (pc)^2=p^2c^2$ $\Rightarrow b^2 p = (pc)^2=p^2c^2$
$\implies b^2 = pc^2$ $\Rightarrow b^2 = pc^2$
$\implies p \divides b$ $\Rightarrow p|b$
$\implies (p \divides b \land p \divides a \land \text{PGCD}(a,b)=1) \implies \bot$ $\Rightarrow (p|b \land p|a \land \text{PGCD}(a,b)=1) \Rightarrow \bot$
$\implies \sqrt{p} \notin \Q$ $\Rightarrow \sqrt{p} \notin \Q$
\end{proof} \end{proof}

View File

@ -13,7 +13,7 @@ $S = \{a,b,c\}$
\langsubsection{Extensionnalité}{Extensionality} \langsubsection{Extensionnalité}{Extensionality}
$\forall A\forall B(\forall X(X \in A \equivalence X \in B) \implies A = B)$ $\forall A\forall B(\forall X(X \in A \Leftrightarrow X \in B) \Rightarrow A = B)$
\langsubsection{Spécification}{Specification} \langsubsection{Spécification}{Specification}
%TODO Complete subsection %TODO Complete subsection
@ -32,9 +32,9 @@ Unite all elements of two given sets into one.
$n,m \in \N$ $n,m \in \N$
$A := \{a_0, \cdots, a_n\}$ $A = \{a_0, \cdots, a_n\}$
$B := \{b_0, \cdots, b_m\}$ $B = \{b_0, \cdots, b_m\}$
$A \union B = \{a_0, \cdots, a_n, b_0, \cdots, b_m\}$ $A \union B = \{a_0, \cdots, a_n, b_0, \cdots, b_m\}$
@ -47,7 +47,7 @@ $A \union B = \{a_0, \cdots, a_n, b_0, \cdots, b_m\}$
\subsection{Power set} \subsection{Power set}
%TODO Complete subsection %TODO Complete subsection
For a set $S$ such that $\card{S} = n \implies \card{\mathbf{P}(S)} = 2^n$ For a set $S$ such that $\card{S} = n \equivalence \card{\mathbf{P}(S)} = 2^n$
\langsubsection{Choix}{Choice} \langsubsection{Choix}{Choice}
%TODO Complete subsection %TODO Complete subsection
@ -77,9 +77,9 @@ If the domain is the same as the codomain then the function is an endormorphsim
\subsection{Notation} \subsection{Notation}
$\functiondef{A}{B}$ $A \longrightarrow B$
$\function{f}{x}{f(x)}$ $ x \longrightarrow f(x)$
\langsubsection{Injectivité}{Injectivity} \label{definition:injective} \langsubsection{Injectivité}{Injectivity} \label{definition:injective}

View File

@ -33,8 +33,8 @@ On appellera $(E,\norm{.})$ un \textbf{espace vectoriel normé}.
$n \in \N^*, E = \R^n$ $n \in \N^*, E = \R^n$
\begin{itemize} \begin{itemize}
\item{$\norm{x}_1 = \sum\limits_{i=0}^n \abs{x_i}$} \item{$\norm{x}_1 = \sum_{i=0}^n \abs{x_i}$}
\item{$\norm{x}_2 = \sqrt{\sum\limits_{i=0}^n x^2_i}$} \item{$\norm{x}_2 = \sqrt{\sum_{i=0}^n x^2_i}$}
\item{$\norm{x}_\infty = \max\{\abs{x_0}, \dots, \abs{x_n}\}$} \item{$\norm{x}_\infty = \max\{\abs{x_0}, \dots, \abs{x_n}\}$}
\item{$E = R_n[X], \norm{P} = \int_0^1 \abs{P(x)}dx$} \item{$E = R_n[X], \norm{P} = \int_0^1 \abs{P(x)}dx$}
\item{$m \in \N^*, E = \mathcal{L}(R^n, R^m), \norm{\phi} = \max\{\norm{\phi(e_i)}_\infty, i \subseteq N^*\}$} ($e_i :=$ base canonique de $\R^n$) \item{$m \in \N^*, E = \mathcal{L}(R^n, R^m), \norm{\phi} = \max\{\norm{\phi(e_i)}_\infty, i \subseteq N^*\}$} ($e_i :=$ base canonique de $\R^n$)
@ -100,7 +100,7 @@ Soit $(E, \norm{.})$ un espace vectoriel normé et \suite{x} une suite délé
Montrer que toute sous-suite de $(x_n)_{n \in \N}$ converge vers $l$. Montrer que toute sous-suite de $(x_n)_{n \in \N}$ converge vers $l$.
\\ \\
Soit $\epsilon > 0$, comme $\lim\limits_{n \to +\infty} x_n = l$ Soit $\epsilon > 0$, comme $\lim_{n \to +\infty} x_n = l$
$\implies \exists n_0 \in \N$ tel que $\forall x \ge n_0$, $x_n \in \mathbb{B}(l, \epsilon)$ $\implies \exists n_0 \in \N$ tel que $\forall x \ge n_0$, $x_n \in \mathbb{B}(l, \epsilon)$
\\ \\
@ -156,7 +156,7 @@ $K$ est compact $\implies K$ possède un point d'accumulation.
$K$ est compact $K$ est compact
\\ \\
Soit $\epsilon > 0 \land X = \{x_n, \forall n \in \N \} \land X \subset K$ Soit $\epsilon > 0$ \&\& $X = \{x_n, \forall n \in \N \}$ \&\& $X \subset K$
$\implies \exists l \in K$ tel que $\lim\limits_{n \to +\infty} x_n = l \in \mathbb{B}(l, \epsilon) \subset K$ $\implies \exists l \in K$ tel que $\lim\limits_{n \to +\infty} x_n = l \in \mathbb{B}(l, \epsilon) \subset K$
@ -170,7 +170,7 @@ $\implies K$ possède un point d'accumulation
$K$ possède un point d'accumulation. $\implies K$ est compact. $K$ possède un point d'accumulation. $\implies K$ est compact.
\end{lemme_sq} \end{lemme_sq}
Soit $X = \{x_n, \forall n \in \N \} \land X \subset K$ Soit $X = \{x_n, \forall n \in \N \}$ \&\& $X \subset K$
\paragraph{Si $X$ est fini} \paragraph{Si $X$ est fini}

View File

@ -1,4 +1,4 @@
digraph denumberabilityIntegers { digraph {
node [shape = plaintext, fontcolor = White, fontsize = 30]; node [shape = plaintext, fontcolor = White, fontsize = 30];
rankdir = LR; rankdir = LR;
bgcolor = None; bgcolor = None;

View File

@ -1,15 +1,13 @@
digraph denumberabilityRationals { digraph {
node [shape = plaintext, fontcolor = White, fontsize = 15]; node [shape = plaintext, fontcolor = White, fontsize = 30];
rankdir = LR; rankdir = LR;
bgcolor = None; bgcolor = None;
Edge [fontcolor = White, color = White, fontsize = 15]; Edge [fontcolor = White, color = White, fontsize = 25];
subgraph dots { subgraph dots {
node [label = "..."]; node [label = "..."];
d; d2; d3; d4; d5; d; d2; d3; d4; d5;
vd; vd2; vd3; vd4; vd5; vd6; vd; vd2; vd3; vd4; vd5; vd6;
vd5 -> d5;
vd -> vd2 -> vd3 -> vd4 -> vd5 -> vd6 [color = None];
} }
subgraph pos { subgraph pos {
@ -19,30 +17,26 @@ digraph denumberabilityRationals {
"2/1" -> "3/1" [taillabel = 2]; "2/1" -> "3/1" [taillabel = 2];
"3/1" -> "2/2" [taillabel = 3]; "3/1" -> "2/2" [taillabel = 3];
"2/2" -> "1/3" [taillabel = 4]; "2/2" -> "1/3" [taillabel = 4];
"1/3" -> "1/4" [taillabel = 5]; "1/3" -> "2/3" [taillabel = 5];
"1/4" -> "2/3" [taillabel = 6]; "2/3" -> "3/2" [taillabel = 6];
"2/3" -> "3/2" [taillabel = 7]; "3/2" -> "4/1" [taillabel = 7];
"3/2" -> "4/1" [taillabel = 8]; "4/1" -> "5/1" [taillabel = 8];
"4/1" -> "5/1" [taillabel = 9]; "5/1" -> "4/2" [taillabel = 9];
"5/1" -> "4/2" [taillabel = 10]; "4/2" -> "3/3" [taillabel = 10];
"4/2" -> "3/3" [taillabel = 11]; "3/3" -> "2/4" [taillabel = 11];
"3/3" -> "2/4" [taillabel = 12]; "2/4" -> "1/4" [taillabel = 12];
"2/4" -> "1/5" [taillabel = 13]; "1/4" -> "1/5" [taillabel = 13];
"1/5" -> vd [taillabel = 14]; "1/5" -> "2/5" [taillabel = 14];
vd -> "2/5" [taillabel = 15]; //"2/5" -> "3/4" [taillabel = 15];
"2/5" -> "3/4" [taillabel = 16]; //"3/4" -> "4/3" [taillabel = 16];
"3/4" -> "4/3" [taillabel = 17]; "4/3" -> "5/2" [taillabel = 17];
"4/3" -> "5/2" [taillabel = 18];
"5/2" -> d [taillabel = 19]; "1/5" -> vd [color = None];
d2 -> "5/3" [taillabel = 22]; "2/5" -> vd2 [color = None];
"5/3" -> "4/4" [taillabel = 23]; "3/5" -> vd3 [color = None];
"4/4" -> "3/5" [taillabel = 24]; "4/5" -> vd4 [color = None];
"3/5" -> vd2 [taillabel = 25]; "5/5" -> vd5 [color = None];
vd3 -> "4/5" [taillabel = 31]; d5 -> vd6 [color = None];
"4/5" -> "5/4" [taillabel = 32];
"5/4" -> d3 [taillabel = 33];
d4 -> "5/5" [taillabel = 41];
"5/5" -> vd4 [taillabel = 42];
} }
"1/1" -> "2/1" -> "3/1" -> "4/1" -> "5/1" -> d [color = None]; "1/1" -> "2/1" -> "3/1" -> "4/1" -> "5/1" -> d [color = None];
@ -50,4 +44,5 @@ digraph denumberabilityRationals {
"1/3" -> "2/3" -> "3/3" -> "4/3" -> "5/3" -> d3 [color = None]; "1/3" -> "2/3" -> "3/3" -> "4/3" -> "5/3" -> d3 [color = None];
"1/4" -> "2/4" -> "3/4" -> "4/4" -> "5/4" -> d4 [color = None]; "1/4" -> "2/4" -> "3/4" -> "4/4" -> "5/4" -> d4 [color = None];
"1/5" -> "2/5" -> "3/5" -> "4/5" -> "5/5" -> d5 [color = None]; "1/5" -> "2/5" -> "3/5" -> "4/5" -> "5/5" -> d5 [color = None];
vd -> vd2 -> vd3 -> vd4 -> vd5 -> vd6 [color = None];
} }

View File

@ -19,15 +19,15 @@
%\usepackage{lipsum} % Command to generate temporary dummy text %\usepackage{lipsum} % Command to generate temporary dummy text
\usepackage[ruled,vlined,linesnumbered]{algorithm2e} % Add the algorithm environnement \usepackage[ruled,vlined,linesnumbered]{algorithm2e} % Add the algorithm environnement
\usepackage[codedark]{packages/themes} % Include many colours themes ([default], codedark or dracula) \usepackage[codedark]{packages/themes} % Include many colours themes ([default], codedark or dracula)
\pagecolor{theme_colour_background} \pagecolor{th_colour_bg}
\color{theme_colour_foreground} \color{th_colour_fg}
\usepackage{amsmath} % Provides command to typeset matrices with different delimiters \usepackage{amsmath} % Provides command to typeset matrices with different delimiters
\usepackage{listings} % Add an environnement to highlight code \usepackage{listings} % Add an environnement to highlight code
\usepackage{xargs} % Allow multiple optional parameters parsing \usepackage{xargs} % Allow multiple optional parameters parsing
\usepackage{mdframed} % Fancy rectangles \usepackage{mdframed} % Fancy rectangles
\mdfsetup{linecolor = theme_colour_foreground, innerlinecolor = theme_colour_foreground, % \mdfsetup{linecolor = th_colour_fg, innerlinecolor = th_colour_fg,%
middlelinecolor = theme_colour_foreground, outerlinecolor = theme_colour_foreground, % middlelinecolor = th_colour_fg, outerlinecolor = th_colour_fg,%
backgroundcolor = theme_colour_background, fontcolor = theme_colour_foreground} backgroundcolor = th_colour_bg, fontcolor = th_colour_fg}
\usepackage{packages/macros} % Customs macros \usepackage{packages/macros} % Customs macros
\usepackage{graphicx} \usepackage{graphicx}
\usepackage{makeidx}[intoc] % Make a word index \usepackage{makeidx}[intoc] % Make a word index

View File

@ -16,16 +16,16 @@
\newcommand{\R}{\mathbb{R}} % Real numbers symbol \newcommand{\R}{\mathbb{R}} % Real numbers symbol
\newcommand{\C}{\mathbb{C}} % Complex numbers symbol \newcommand{\C}{\mathbb{C}} % Complex numbers symbol
\newcommand{\Cat}{\mathcal{C}} % Category \newcommand{\Cat}{\mathcal{C}} % Category
\newcommand{\Set}{\mathbf{Set}} % Set category
\newcommand{\K}{\mathbb{K}} % Corps \newcommand{\K}{\mathbb{K}} % Corps
\newcommand{\Hq}{\mathbb{H}} % Quaternions numbers symbol \newcommand{\Hq}{\mathbb{H}} % Quaternions numbers symbol
\newcommand{\Ot}{\mathbb{O}} % Octonions numbers symbol \newcommand{\Ot}{\mathbb{O}} % Octonions numbers symbol
\newcommand{\Se}{\mathbb{S}} % Sedenions numbers symbol \newcommand{\Se}{\mathbb{S}} % Sedenions numbers symbol
\newcommand{\Pn}{\mathbb{P}} % Sets of all the prime numbers \newcommand{\Pn}{\mathbb{P}} % Sets of all the prime numbers
\newcommand{\false}{F} % New symbol for false value \newcommand{\false}{{\color{th_colour_red}F}} % New symbol for false value
\newcommand{\true}{V} % New symbol for true value \newcommand{\true}{{\color{th_colour_green}V}} % New symbol for true value
%\newcommand{\false}{F} % New symbol for false value
%\newcommand{\true}{V} % New symbol for true value
\DeclareMathOperator{\Rel}{\mathcal{R}} % New symbol for binary relations \DeclareMathOperator{\Rel}{\mathcal{R}} % New symbol for binary relations
\DeclareMathOperator{\composes}{\circ} % New symbol composing morphisms
\DeclarePairedDelimiter{\abs}{|}{|} \DeclarePairedDelimiter{\abs}{|}{|}
\DeclarePairedDelimiter{\card}{|}{|} \DeclarePairedDelimiter{\card}{|}{|}
\DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor} \DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor}
@ -35,14 +35,10 @@
\newtheorem{theorem}{\lang{Théorème}{Theoreme}} \newtheorem{theorem}{\lang{Théorème}{Theoreme}}
\newtheorem{lemme}{Lemme} \newtheorem{lemme}{Lemme}
\newcommandx{\suite}[3][1=n,2=n]{$(#3_{#1})_{#2 \in \N}$} \newcommandx{\suite}[3][1=n,2=n]{$(#3_{#1})_{#2 \in \N}$}
\newcommand{\innerproduct}[2]{\langle #1, #2 \rangle}
\newenvironment{definition_sq}{\begin{mdframed}\begin{definition}}{\end{definition}\end{mdframed}} \newenvironment{definition_sq}{\begin{mdframed}\begin{definition}}{\end{definition}\end{mdframed}}
\newenvironment{theorem_sq}{\begin{mdframed}\begin{theorem}}{\end{theorem}\end{mdframed}} \newenvironment{theorem_sq}{\begin{mdframed}\begin{theorem}}{\end{theorem}\end{mdframed}}
\newenvironment{lemme_sq}{\begin{mdframed}\begin{lemme}}{\end{lemme}\end{mdframed}} \newenvironment{lemme_sq}{\begin{mdframed}\begin{lemme}}{\end{lemme}\end{mdframed}}
\newcommand{\norm}[1]{\lVert#1\rVert} \newcommand{\norm}[1]{\|#1\|}
\newcommand{\Norm}[1]{\lVert #1\rVert}
\newcommand{\powerset}[1]{\mathcal{P}(#1)} % Power set
\newcommand{\converges}{\rightarrow}
\newcommand{\equivalence}{\Leftrightarrow} \newcommand{\equivalence}{\Leftrightarrow}
\renewcommand{\implies}{\Longrightarrow} \renewcommand{\implies}{\Longrightarrow}
\newcommand{\Limplies}{\Longleftarrow} \newcommand{\Limplies}{\Longleftarrow}
@ -50,16 +46,10 @@
\newcommand{\Limpliespart}{\fbox{$\Limplies$}} \newcommand{\Limpliespart}{\fbox{$\Limplies$}}
\DeclareMathOperator{\divides}{\mid} \DeclareMathOperator{\divides}{\mid}
\DeclareMathOperator{\suchas}{\text{\lang{tel que}{such as}}} \DeclareMathOperator{\suchas}{\text{\lang{tel que}{such as}}}
\renewcommand{\function}[3]{#1 \colon #2 \longrightarrow #3} \renewcommand{\function}[3]{#1 : #2 \longrightarrow #3}
\newcommand{\functiondef}[2]{\hspace{15pt}#1 \longmapsto #2} \newcommand{\functiondef}[2]{\hspace{15pt}#1 \longmapsto #2}
\newcommand{\otherwise}{\text{\lang{Sinon}{Otherwise}}} \newcommand{\otherwise}{\text{\lang{Sinon}{Otherwise}}}
\DeclareMathOperator{\union}{\cup} \DeclareMathOperator{\union}{\cup}
\DeclareMathOperator{\Union}{\bigcup}
\DeclareMathOperator{\intersection}{\cap}
\DeclareMathOperator{\Intersection}{\bigcap}
\DeclareMathOperator{\cartesianProduct}{\times}
\DeclareMathOperator{\CartesianProduct}{\bigtimes}
\newcommand{\discreteInterval}[1]{[\![#1]\!]}
\renewcommand{\smallskip}{\vspace{3pt}} \renewcommand{\smallskip}{\vspace{3pt}}
\renewcommand{\medskip}{\vspace{6pt}} \renewcommand{\medskip}{\vspace{6pt}}

View File

@ -4,44 +4,44 @@
\RequirePackage{xcolor} \RequirePackage{xcolor}
\DeclareOption{default}{\OptionNotUsed} \DeclareOption{default}{\OptionNotUsed}
\definecolor{theme_colour_background} {RGB} {255, 255, 255} \definecolor{th_colour_bg} {RGB} {255, 255, 255}
\definecolor{theme_colour_foreground} {RGB} {0, 0, 0 } \definecolor{th_colour_fg} {RGB} {0, 0, 0 }
\definecolor{theme_colour_cl} {RGB} {68, 71, 90 } \definecolor{th_colour_cl} {RGB} {68, 71, 90 }
\definecolor{theme_colour_comment} {RGB} {98, 114, 164} \definecolor{th_colour_comment} {RGB} {98, 114, 164}
\definecolor{theme_colour_cyan} {RGB} {139, 233, 253} \definecolor{th_colour_cyan} {RGB} {139, 233, 253}
\definecolor{theme_colour_green} {RGB} {0, 255, 0 } \definecolor{th_colour_green} {RGB} {0, 255, 0 }
\definecolor{theme_colour_orange} {RGB} {255, 184, 108} \definecolor{th_colour_orange} {RGB} {255, 184, 108}
\definecolor{theme_colour_pink} {RGB} {255, 121, 198} \definecolor{th_colour_pink} {RGB} {255, 121, 198}
\definecolor{theme_colour_purple} {RGB} {189, 147, 249} \definecolor{th_colour_purple} {RGB} {189, 147, 249}
\definecolor{theme_colour_red} {RGB} {255, 0, 0 } \definecolor{th_colour_red} {RGB} {255, 0, 0 }
\definecolor{theme_colour_yellow} {RGB} {255, 255, 0 } \definecolor{th_colour_yellow} {RGB} {255, 255, 0 }
\DeclareOption{codedark}{ \DeclareOption{codedark}{
\definecolor{theme_colour_background} {HTML} {222324} \definecolor{th_colour_bg} {HTML} {222324}
\definecolor{theme_colour_foreground} {HTML} {FFFFFF} \definecolor{th_colour_fg} {HTML} {FFFFFF}
\definecolor{theme_colour_cl} {RGB} {68, 71, 90 } \definecolor{th_colour_cl} {RGB} {68, 71, 90 }
\definecolor{theme_colour_comment} {RGB} {98, 114, 164} \definecolor{th_colour_comment} {RGB} {98, 114, 164}
\definecolor{theme_colour_cyan} {RGB} {139, 233, 253} \definecolor{th_colour_cyan} {RGB} {139, 233, 253}
\definecolor{theme_colour_green} {RGB} {80, 250, 123} \definecolor{th_colour_green} {RGB} {80, 250, 123}
\definecolor{theme_colour_orange} {RGB} {255, 184, 108} \definecolor{th_colour_orange} {RGB} {255, 184, 108}
\definecolor{theme_colour_pink} {RGB} {255, 121, 198} \definecolor{th_colour_pink} {RGB} {255, 121, 198}
\definecolor{theme_colour_purple} {RGB} {189, 147, 249} \definecolor{th_colour_purple} {RGB} {189, 147, 249}
\definecolor{theme_colour_red} {RGB} {255, 85, 85 } \definecolor{th_colour_red} {RGB} {255, 85, 85 }
\definecolor{theme_colour_yellow} {RGB} {241, 250, 140} \definecolor{th_colour_yellow} {RGB} {241, 250, 140}
} }
\DeclareOption{dracula}{ \DeclareOption{dracula}{
\definecolor{theme_colour_background} {RGB} {40, 42, 54 } \definecolor{th_colour_bg} {RGB} {40, 42, 54 }
\definecolor{theme_colour_foreground} {RGB} {248, 248, 242} \definecolor{th_colour_fg} {RGB} {248, 248, 242}
\definecolor{theme_colour_cl} {RGB} {68, 71, 90 } \definecolor{th_colour_cl} {RGB} {68, 71, 90 }
\definecolor{theme_colour_comment} {RGB} {98, 114, 164} \definecolor{th_colour_comment} {RGB} {98, 114, 164}
\definecolor{theme_colour_cyan} {RGB} {139, 233, 253} \definecolor{th_colour_cyan} {RGB} {139, 233, 253}
\definecolor{theme_colour_green} {RGB} {80, 250, 123} \definecolor{th_colour_green} {RGB} {80, 250, 123}
\definecolor{theme_colour_orange} {RGB} {255, 184, 108} \definecolor{th_colour_orange} {RGB} {255, 184, 108}
\definecolor{theme_colour_pink} {RGB} {255, 121, 198} \definecolor{th_colour_pink} {RGB} {255, 121, 198}
\definecolor{theme_colour_purple} {RGB} {189, 147, 249} \definecolor{th_colour_purple} {RGB} {189, 147, 249}
\definecolor{theme_colour_red} {RGB} {255, 85, 85 } \definecolor{th_colour_red} {RGB} {255, 85, 85 }
\definecolor{theme_colour_yellow} {RGB} {241, 250, 140} \definecolor{th_colour_yellow} {RGB} {241, 250, 140}
} }
\ProcessOptions\relax \ProcessOptions\relax