Compare commits
No commits in common. "e7d6bdb371dcb504fdd5d936d3577ca370c5f757" and "4be8cf3538a9da33a931b4bd336ca53ee3ab81a7" have entirely different histories.
e7d6bdb371
...
4be8cf3538
@ -46,7 +46,7 @@ Un corps abélien est un corps \ref{definition:field} dont la loi de composition
|
||||
Un matrice est une structure qui permet de regrouper plusieurs éléments d'un corps \ref{definition:field} $\K$ en un tableau de $n$ lignes et $m$ colonnes ou plus et est notée $\mathcal{M}_{n,m}(\K)$. Dans le cas d'une matrice carrée , on peux simplifier la notation en $\mathcal{M}_{n}(\K)$.
|
||||
|
||||
\begin{definition_sq} \label{definition:square_matrix}
|
||||
Une matrice carrée (notée $\mathcal{M}_n(\K)$) est une matrice $\mathcal{M}_{n,m}(\K)$ d'un corps $\K$ où $n = m$.
|
||||
Une matrice carrée (notée $\mathcal{M}_n(\K)$) est une matrice $\mathcal{M}_{n,m}(\K)$ d'un corps $\K$ où $n + m$.
|
||||
\end{definition_sq}
|
||||
|
||||
\begin{definition_sq} \label{definition:identity_matrix}
|
||||
@ -127,7 +127,7 @@ $a \in Tr_n$
|
||||
\langsubsubsection{Cas 2x2}{2x2 case}
|
||||
%TODO Complete subsection
|
||||
|
||||
$a_1x_1^2 + a_2x_1x_2 + a_3x_2^2$
|
||||
$a_1x_1^2 + a_2x_1x_2 + a_3x_2^2 = b$
|
||||
|
||||
\langsubsubsection{Cas 3x3}{3x3 case}
|
||||
%TODO Complete subsection
|
||||
@ -143,15 +143,15 @@ $a_1x_1^2 + a_2x_2^2 + a_3x_3^3 + a_4x_1x_2 + a_5x_1x_3 + a_6x_2x_3$
|
||||
$\begin{bmatrix}x_1 & x_2\end{bmatrix}
|
||||
\begin{bmatrix}a_1 & \frac{a_2}{2} \\\frac{a_2}{2} & a_3\end{bmatrix}
|
||||
\begin{bmatrix}x_1\\x_2\end{bmatrix}
|
||||
\Leftrightarrow X^TAX$
|
||||
= b \Leftrightarrow X^TAX$
|
||||
|
||||
\langsubsubsection{Cas 3x3}{3x3 case}
|
||||
%TODO Complete subsection
|
||||
|
||||
$\begin{bmatrix}x_1 & x_2 & x_3 \end{bmatrix}
|
||||
\begin{bmatrix}a_1 & \frac{a_2}{2} & \frac{a_4}{2} \\\frac{a_2}{2} & a_2 & \frac{a_3}{2} \\\frac{a_3}{2} & \frac{a_4}{2} & a_3\end{bmatrix}
|
||||
\begin{bmatrix}a_1 & \frac{a_2}{3} & \frac{a_4}{3} \\\frac{a_2}{3} & a_2 & \frac{a_3}{3} \\\frac{a_3}{3} & \frac{a_4}{3} & a_3\end{bmatrix}
|
||||
\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}
|
||||
\Leftrightarrow X^TAX$
|
||||
= b \Leftrightarrow X^TAX$
|
||||
|
||||
\langsubsection{Cas général}{General case}
|
||||
%TODO Complete subsection
|
||||
@ -186,8 +186,8 @@ Et vérifiant $\forall(\alpha,\beta) \in \K, \forall(a,b,c) \in E$
|
||||
|
||||
\begin{itemize}
|
||||
\item{Unital en $*$}
|
||||
\item{Distributivité (gauche et droite) $+$ de $\K \Leftrightarrow a(\alpha+\beta)=(\alpha+\beta)a=\alpha a + \beta a$}
|
||||
\item{Distributivité (gauche et droite) $*$ de $\K \Leftrightarrow a(\alpha*\beta)=(\alpha*\beta)a=\alpha(\beta a)$}
|
||||
\item{Distributivité (gauche et droite) $+$ de $\K \Leftrightarrow a(\alpha+\beta)+(\alpha+\beta)a+\alpha a + \beta a$}
|
||||
\item{Distributivité (gauche et droite) $*$ de $\K \Leftrightarrow a(\alpha*\beta)+(\alpha*\beta)a+\alpha(\beta a)$}
|
||||
\end{itemize}
|
||||
|
||||
\langsubsection{Famille libre}{Free family} \label{definition:vector_space_free_family}
|
||||
@ -285,14 +285,13 @@ Given $f: \mathbb{K} \rightarrow \mathbb{K}$
|
||||
|
||||
\langsubsubsection{Axiomes}{Axioms}
|
||||
|
||||
Une forme bilinéaire est une fonction $\function{B}{E^2}{K}$ sur un $\K$-espace vectoriel $E$ qui est linéaire sur les deux arguments tel qui respectes les axiomes suivants :
|
||||
|
||||
$u,v,w \in E, a \in K$
|
||||
Une forme bilinéaire est une fonction $\function{B}{E \cartesianProduct E}{K}$ sur un $\K$-espace vectoriel $E$ qui est linéaire sur les deux arguments tel qui respectes les axiomes suivants :
|
||||
|
||||
\begin{itemize}
|
||||
\item{$B(u + v,w) = B(u,w) + B(v,w)$}
|
||||
\item{$B(au,w) = B(u,aw) = aB(u,w)$}
|
||||
\item{$B(u,w + v) = B(u,v) + B(u,w)$}
|
||||
\item{$\forall u,v,w \in E, B(u + v,w) = B(u,w) + B(v,w)$}
|
||||
\item{$\forall u,v \in E, \forall a \in K, B(au,w) = aB(u,w)$}
|
||||
\item{$\forall u,v,w \in E, B(u,w + v) = B(u,v) + B(u,w)$}
|
||||
\item{$\forall u,v \in E, \forall a \in K, B(u,aw) = aB(u,w)$}
|
||||
\end{itemize}
|
||||
|
||||
\langsubsection{Produit scalaire}{Inner product}
|
||||
@ -308,23 +307,11 @@ Un produit scalaire notée $\innerproduct{-}{-}$ sur un $\R$-espace vectoriel $E
|
||||
\item{Non-dégénérescence: $\forall x \in E, \innerproduct{x}{x} = 0 \implies x = 0$}
|
||||
\end{itemize}
|
||||
|
||||
\langsubsection{Norme réel}{Real norm}
|
||||
\langsubsection{Norme Réel}{Real norm}
|
||||
|
||||
\langsubsubsection{Axiomes}{Axioms}
|
||||
|
||||
Une norme notée $\norm{.}_E$ sur un $\R$-espace vectoriel $E$ est une application $\function{\norm{.}}{E}{\R_+}$ qui respectes les axiomes suivants :
|
||||
|
||||
\begin{itemize}
|
||||
\item{Séparation: $\forall x \in E, \norm{x} = 0 \implies x = 0$}
|
||||
\item{Homogénéité: $\forall x \in E, \forall \lambda \in \R \norm{\lambda x} = \abs{\lambda}\norm{x}$}
|
||||
\item{Inégalité triangulaire: $\forall x,y \in E, \norm{x + y} \le \norm{x} + \norm{y}$}
|
||||
\end{itemize}
|
||||
|
||||
\langsubsection{Norme complexe}{Complex norm}
|
||||
|
||||
\langsubsubsection{Axiomes}{Axioms}
|
||||
|
||||
Une norme notée $\norm{.}_E$ sur un $\C$-espace vectoriel $E$ est une application $\function{\norm{.}}{E}{\C}$ qui respectes les axiomes suivants :
|
||||
Une norme notée $\norm{.}_E$ sur un $\R$-espace vectoriel $E$ est une application $\function{\norm{.}}{E}{R_+}$ qui respectes les axiomes suivants :
|
||||
|
||||
\begin{itemize}
|
||||
\item{Séparation: $\forall x \in E, \norm{x} = 0 \implies x = 0$}
|
||||
@ -334,8 +321,106 @@ Une norme notée $\norm{.}_E$ sur un $\C$-espace vectoriel $E$ est une applicati
|
||||
|
||||
\langsubsection{Espace pré-hilbertien}{Pre-hilbertian Space}
|
||||
|
||||
A $\K$-espace vectoriel muni d'un produit scalaire note $(E, \innerproduct{-}{-})$ est appelé un espace pré-hilbertien.
|
||||
A $\K$-espace vectoriel muni d'un produit scalaire est appelé un espace pré-hilbertien.
|
||||
|
||||
\langsubsection{Espace Euclidien}{Euclidian Space}
|
||||
|
||||
Un espace euclidien est une espace pré-hilbertien réel à dimension finie.
|
||||
|
||||
\pagebreak
|
||||
|
||||
\section{Devoir Maison 1 : Algèbre multilinéaire}
|
||||
|
||||
\section{Exercice 1}
|
||||
|
||||
Soit $(E,\innerproduct{.}{.})$ un espace euclidien. On définit
|
||||
|
||||
$$\function{i}{E \setminus \{0\}}{E \setminus \{0\}}$$
|
||||
$$\functiondef{x}{\frac{x}{\norm{x}^2}}$$
|
||||
|
||||
qu'on appelle \textit{inversion} de centre 0 et de rapport 1.
|
||||
|
||||
\begin{enumerate}
|
||||
\item{Montrer que $i$ est une bijection de $E \setminus \{0\}$ sur lui-même, vérifiant $i \composes i = id_E$}
|
||||
|
||||
\begin{proof}\par
|
||||
Si $i$ est une bijection de $E$ alors il existe une fonction réciproque (ou inverse) $i^{-1}$ telle que $i \composes i^{-1} = id_E$, or $i$ est défini comme son propre inverse. Donc il suffit d'évaluer $i$ avec lui-même pour terminer la preuve.
|
||||
|
||||
$$i \composes i = \frac{\frac{x}{\norm{x}^2}}{\norm{\frac{x}{\norm{x}^2}}^2} = \frac{\frac{x}{\norm{x}^2}}{\frac{\norm{x}^2}{\norm{x}^4}} = \frac{\norm{x}^2 x}{\norm{x}^2} = x = id_E$$
|
||||
\end{proof}
|
||||
|
||||
\item{Montrer $$\forall x,y \in E \setminus \{0\}, \frac{\innerproduct{i(x)}{i(y)}}{\norm{i(x)}\norm{i(y)}} = \frac{\innerproduct{x}{y}}{\norm{x}\norm{y}}$$ On dit que $i$ est une application \textit{conforme}.}
|
||||
|
||||
\begin{proof}\par
|
||||
Soit $x,y \in E \setminus \{0\}$
|
||||
$$\frac{\innerproduct{i(x)}{i(y)}}{\norm{i(x)}\norm{i(y)}} = \frac{\innerproduct{\frac{x}{\norm{x}^2}}{\frac{y}{\norm{y}^2}}}{\norm{\frac{x}{\norm{x}^2}}\norm{\frac{y}{\norm{y}^2}}} = \frac{\frac{\innerproduct{x}{y}}{\norm{x}^2\norm{y}^2}}{\frac{\norm{x}\norm{y}}{\norm{x}^2\norm{y}^2}} = \frac{\innerproduct{x}{y}}{\norm{x}\norm{y}}$$
|
||||
\end{proof}
|
||||
|
||||
\item{Démontrer que $$\forall x,y \in E \setminus \{0\}, \norm{i(x) - i(y)} = \frac{\norm{x - y}}{\norm{x}\norm{y}}$$}
|
||||
|
||||
\begin{proof}\par
|
||||
Soit $x,y \in E \setminus \{0\}$
|
||||
$$\norm{i(x) - i(y)} = \norm{\frac{x}{\norm{x}^2} - \frac{y}{\norm{y}^2}} = \norm{\frac{\norm{y}^2 x - \norm{x}^2 y}{\norm{x}^2\norm{y}^2}} = \frac{\norm{\norm{y}^2 x - \norm{x}^2 y}}{\norm{x}^2\norm{y}^2} = \frac{\sqrt{\innerproduct{\norm{y}^2 x - \norm{x}^2 y}{\norm{y}^2 x - \norm{x}^2 y}}}{\norm{x}^2\norm{y}^2}$$
|
||||
$$= \frac{\sqrt{\innerproduct{\norm{y}^2 x}{\norm{y}^2 x} - 2 \innerproduct{\norm{y}^2 x}{\norm{x}^2 y} - \innerproduct{\norm{x}^2 y}{\norm{x}^2 y}}}{\norm{x}^2\norm{y}^2} = \frac{\sqrt{\norm{y}^4 \norm{x}^2 - 2\norm{y}^2 \norm{x}^2 \innerproduct{x}{y} - \norm{x}^4\norm{y}^2}}{\norm{x}^2\norm{y}^2}$$
|
||||
$$= \frac{\sqrt{\norm{y}^2 \norm{x}^2 (\norm{y}^2 - 2 \innerproduct{x}{y} - \norm{x}^2)}}{\norm{x}^2\norm{y}^2} = \frac{\norm{x}\norm{y}\sqrt{\innerproduct{x - y}{x - y}}}{\norm{x}^2\norm{y}^2} = \frac{\norm{x - y}}{\norm{x}\norm{y}}$$
|
||||
\end{proof}
|
||||
|
||||
\item{En déduire que pour tous $x,y,z \in E \setminus \{0\}$, on a $$\norm{x}\norm{y - z} \le \norm{y}\norm{x - z} + \norm{z}\norm{x - y}$$}
|
||||
|
||||
\begin{proof}\par
|
||||
Posons $a,b \in E \setminus \{0\}$ tel que $a := i(y) - i(x)$ et $b := i(x) - i(z)$, puis utilisons l'inégalité triangulaire $\norm{a + b} \le \norm{a} + \norm{b}$ et développons.
|
||||
$$\norm{(i(y) - i(x)) + (i(x) - i(z))} = \norm{i(y) - i(z)} \le \norm{i(x) - i(z)} + \norm{i(x) - i(y)}$$
|
||||
Par le résultat de (3).
|
||||
$$\frac{\norm{y - z}}{\norm{y}\norm{z}} \le \frac{\norm{x - z}}{\norm{x}\norm{z}} + \frac{\norm{x - y}}{\norm{x}\norm{y}}$$
|
||||
En multipliant par $\norm{x}\norm{y}\norm{z}$
|
||||
$$\norm{x}\norm{y - z} \le \norm{y}\norm{x - z} + \norm{z}\norm{x - y}$$
|
||||
\end{proof}
|
||||
|
||||
\item{En déduire que pour tous $a,b,c,d \in E \setminus \{0\}$, on a $$\norm{a - c}\norm{b - d} \le \norm{a - b}\norm{c - d} + \norm{a - d}\norm{b - c}$$ C'est l'\textit{inégalité de Ptolémée}.}
|
||||
|
||||
\bigskip
|
||||
Pour cette preuve nous aurons besoin de ce lemme :
|
||||
\begin{lemme_sq} \label{norm_diff_symetry}
|
||||
$\forall (e,f) \in E, \norm{e - f} = \norm{f - e}$
|
||||
\begin{proof}\par
|
||||
Soit $E$ un $\K$-espace vectoriel et soit $e,f \in E$.
|
||||
|
||||
Comme $\exists (-1_K) \in \K(+, \cartesianProduct) \suchas (-1_K) \cartesianProduct (-1_K) = 1_K$.
|
||||
|
||||
$$\norm{e - f} = \norm{-1_\K(f - e)} = \abs{-1_\K}\norm{f - e} = \norm{f - e}$$
|
||||
\end{proof}
|
||||
\end{lemme_sq}
|
||||
|
||||
\begin{proof}\par
|
||||
Soit $a,b,c,d \in E$.
|
||||
|
||||
Comme $E$ est un espace vectoriel et donc un groupe par $E(+)$.
|
||||
|
||||
Posons $x,y,z \in E$ tel que $x := a - c$, $y := a - b$ et $z := a - d$.
|
||||
|
||||
Ainsi, par le résultat (4).
|
||||
|
||||
$$\norm{x}\norm{y - z} \le \norm{y}\norm{x - z} + \norm{z}\norm{x - y}$$
|
||||
|
||||
Par le lemme (\ref{norm_diff_symetry}).
|
||||
|
||||
$$\norm{x}\norm{z - y} \le \norm{y}\norm{z - x} + \norm{z}\norm{y - x}$$
|
||||
|
||||
En développant $x$, $y$ et $z$ on obtient
|
||||
|
||||
$$\norm{a - c}\norm{(a - d) - (a - b)} \le \norm{a - b}\norm{(a - d) - (a - c)} + \norm{a - d}\norm{(a - b) - (a - c)}$$
|
||||
|
||||
$$\norm{a - c}\norm{b - d} \le \norm{a - b}\norm{c - d} + \norm{a - d}\norm{b - c}$$
|
||||
\end{proof}
|
||||
|
||||
Soit $u \in E$ tel que $\norm{u} = 1$ et soit $\alpha \ne 0$. Considérons $H = \{ x \in E | \innerproduct{x}{u} = \alpha \}$. C'est un hyperplan affine de $E$.
|
||||
|
||||
\item{Justifier que $0 \notin H$. En utilisant la question 3, montrer alors que $i(H) = S \setminus \{0\}$, où $$S = \lbrace x \in E | \Norm{x - \frac{1}{2\alpha}u} = \frac{1}{2\abs{\alpha}} \rbrace$$}
|
||||
% TODO Complete 6.
|
||||
|
||||
Soient $a \in E$ et $R > 0$. On note $S(a,R) = \{ x \in E | \norm{x - a} = R\}$ la sphère de centre $a$ et de rayon $R$.
|
||||
|
||||
\item{On suppose que $\norm{a} \ne R$. Montrer que $0 \notin S(a,R)$ et que $$ i(S(a,R)) = S(\frac{a}{\norm{a}^2 - R^2}, \frac{R}{\abs{\norm{a}^2 - R^2}})$$}
|
||||
% TODO Complete 7.
|
||||
\end{enumerate}
|
||||
|
||||
|
@ -5,111 +5,23 @@ Category is a general theory of mathematical structures and their relations.
|
||||
|
||||
\langsection{Définition}{Definition}
|
||||
|
||||
\begin{definition_sq} \label{definition:category}
|
||||
A category $\Cat$ is a collection of objects and morphisms
|
||||
\end{definition_sq}
|
||||
|
||||
\langsection{Morphismes}{Morphisms}
|
||||
%TODO Complete section
|
||||
|
||||
\begin{definition_sq} \label{definition:morphism}
|
||||
A morphism $f$ on a category $\Cat$ is a transformation between a domain and a codomain.
|
||||
\end{definition_sq}
|
||||
|
||||
\langsubsection{Section et rétraction}{Section and retraction}
|
||||
|
||||
let $\function{f}{X}{Y}$ and $\function{g}{Y}{X}$ such that $f \composes g = \text{id}_Y$
|
||||
|
||||
$f$ is a retraction of $g$ and $g$ is a section of $f$.
|
||||
|
||||
\begin{tikzcd}
|
||||
Y \arrow[r, "g"] \arrow[rd, "1_Y", below] & X \arrow[d, "f"] \\
|
||||
& Y
|
||||
\end{tikzcd}
|
||||
|
||||
\subsubsection{Section}
|
||||
|
||||
Right inverse of a morphism, is the dual of a retraction. A section that is also an epimorphism is an isomorphism
|
||||
|
||||
\langsubsubsection{Rétraction}{Retraction}
|
||||
|
||||
Left inverse of a morphism, is the dual of a section. A retraction that is also an monomorphism is an isomorphism
|
||||
|
||||
\langsubsection{Epimorphisme}{Epimorphism} \label{definition:epimorphism}
|
||||
%TODO Complete section
|
||||
|
||||
Source: \citeannexes{wikipedia_epimorphism}
|
||||
|
||||
Let $\function{f}{X}{Y}$ and $\function{g_1,g_2}{Y}{Z}$
|
||||
|
||||
An epimorphism is a morphism that is right-cancellative i.e. $g_1 \composes f = g_2 \composes f \implies g_1 = g_2$
|
||||
|
||||
\begin{tikzcd}
|
||||
X \arrow[r, "f"] & Y \arrow[r, "g_1", shift left=1ex] \arrow[r, "g_2", shift right=1ex] & Z
|
||||
\end{tikzcd}
|
||||
|
||||
\langsubsection{Isomorphisme}{Isomorphism} \label{definition:isomorphism}
|
||||
%TODO Complete section
|
||||
|
||||
%Source: \citeannexes{wikipedia_isomorphism}
|
||||
|
||||
Isomorphism is a bijective \ref{definition:bijection} morphism.
|
||||
|
||||
\langsubsection{Endomorphisme}{Endomorphism} \label{definition:endomorphism}
|
||||
%TODO Complete section
|
||||
|
||||
%Source: \citeannexes{wikipedia_endomorphisme}
|
||||
|
||||
\langsubsection{Automorphisme}{Automorphism} \label{definition:automorphism}
|
||||
%TODO Complete section
|
||||
|
||||
%Source: \citeannexes{wikipedia_automorphism}
|
||||
|
||||
An automorphism is a morphism that is both an isomorphism \ref{definition:isomorphism} and an endomorphism \ref{definition:endomorphism}.
|
||||
|
||||
\langsubsection{Homomorphisme}{Homomorphism}
|
||||
%TODO Complete section
|
||||
|
||||
Source: \citeannexes{wikipedia_homomorphism}
|
||||
|
||||
\langsubsection{Homeomorphisme}{Homeomorphism}
|
||||
%TODO Complete section
|
||||
|
||||
%Source: \citeannexes{wikipedia_homeomorphism}
|
||||
|
||||
\langsubsection{Diffeomorphisme}{Diffeomorphism}
|
||||
%TODO Complete section
|
||||
|
||||
%Source: \citeannexes{wikipedia_diffeomorphism}
|
||||
|
||||
% TODO See difference with an differentiable isomorphism endomorphism continuous map
|
||||
|
||||
\langsubsection{Exemples}{Examples}
|
||||
|
||||
\begin{tikzcd}
|
||||
T
|
||||
\arrow[drr, bend left, "x"]
|
||||
\arrow[ddr, bend right, "y"]
|
||||
\arrow[dr, dotted, "{(x,y)}" description] & & \\
|
||||
& X \times_Z Y \arrow[r, "p"] \arrow[d, "q"]
|
||||
& X \arrow[d, "f"] \\
|
||||
& Y \arrow[r, "g"]
|
||||
& Z
|
||||
\end{tikzcd}
|
||||
|
||||
\begin{tikzcd}[column sep=tiny]
|
||||
& \pi_1(U_1) \ar[dr] \ar[drr, "j_1", bend left=20]
|
||||
&
|
||||
&[1.5em] \\
|
||||
\pi_1(U_1 \union U_2) \ar[ur, "i_1"] \ar[dr, "i_2"']
|
||||
&
|
||||
& \pi_1(U_1) \ast_{ \pi_1(U_1 \union U_2)} \pi_1(U_2) \ar[r, dashed, "\simeq"]
|
||||
& \pi_1(X) \\
|
||||
& \pi_1(U_2) \ar[ur]\ar[urr, "j_2"', bend right=20]
|
||||
&
|
||||
&
|
||||
\end{tikzcd}
|
||||
|
||||
\section{Functors}
|
||||
%TODO Complete section
|
||||
|
||||
|
@ -52,8 +52,8 @@ def fibonacci(n: int) -> int:
|
||||
|
||||
\langsection{Exemple en C}{C example}
|
||||
\begin{lstlisting}[language=C]
|
||||
uint64_t fibonacci(const uint64_t n){
|
||||
if (n < 2)
|
||||
int fibonacci(const int n){
|
||||
if (n == 0 || n == 1)
|
||||
return n;
|
||||
return fibonacci(n - 1) + fibonacci(n - 2);
|
||||
}
|
||||
|
@ -1,8 +1,8 @@
|
||||
\langchapter{Définitions}{Definitions}
|
||||
%TODO Complete chapter
|
||||
|
||||
\langsection{Psychologie}{Psychology}
|
||||
|
||||
\langsubsubsection{Palatability}{Palatabilitie}
|
||||
%TODO Complete section
|
||||
|
||||
\langsubsubsection{Eleutheromanie}{Eleuteromania}
|
||||
|
||||
@ -12,14 +12,3 @@ However, it's also sometimes used to simply mean a passion for liberty \citerefe
|
||||
Individuals with this condition are called eleutheromaniacs \citereferences{wheeler_1910_literature}.
|
||||
An antonym for the term is eleutherophobia. An individual that fears freedom is an eleutherophobe \citereferences{robertson_2003_excess}.
|
||||
|
||||
\langsection{Histoire}{History}
|
||||
|
||||
\langsubsubsection{Apocryphie}{Apocryphal}
|
||||
|
||||
In biblical study, Apocrypha refers to books outside an accepted canon of scripture. .n modern use, the term refers specifically to a group of ancient Jewish books that are not part of the Hebrew Bible but are considered canonical in Roman Catholic and Eastern Orthodox churches; Protestant churches follow Jewish tradition in considering these books noncanonical. Both apocrypha and apocryphal come, via Latin, from the Greek word apokrýptein, meaning "to hide (from), keep hidden (from)," which in turn comes from krýptein, "to conceal, hide." Both words entered English in the 16th century with their nonbiblical meanings, apocrypha referring to writings or statements of dubious authenticity, and apocryphal describing such things. Apocryphal is now the more common word. It most often describes an oft-repeated tale that is almost certainly not true.
|
||||
|
||||
\langsection{Littérature}{Litterature}
|
||||
|
||||
\langsubsubsection{Thésaurus}{Thesaurus}
|
||||
|
||||
\lang{Un thésaurus ou dictionnaire analogique est un ouvrage de référence dans lequel les mots sont organisés par champ lexical, où l’on peut trouver des synonymes et antonymes de mots. Il est destiné notamment aux personnes qui écrivent, pour aider à trouver le meilleur mot pour exprimer une idée.}{A thesaurus, sometimes called a synonym dictionary or dictionary of synonyms, is a reference work which arranges words by their meanings (or in simpler terms, a book where one can find different words with similar meanings to other words), sometimes as a hierarchy of broader and narrower terms, sometimes simply as lists of synonyms and antonyms. They are often used by writers to help find the best word to express an idea.}
|
||||
|
@ -1,159 +1,9 @@
|
||||
\langchapter{Différentiabilité}{Differentiability}
|
||||
%TODO Complete chapter
|
||||
|
||||
Une fonction $\function{f}{I}{\K}$ est dérivable en $a \in I$ si le taux d'accroissement $T = \lim\limits_{x \to a}\frac{f(x) - f(a)}{x - a}$, si la limite existe $f'=T$
|
||||
\label{definition:derivative}
|
||||
|
||||
$\lim\limits_{x \to a}\frac{f(x) - f(a)}{x - a} \equivalence \lim\limits_{h \to 0} \frac{f(x + h) - f(x)}{h}$
|
||||
|
||||
\begin{proof}
|
||||
|
||||
Let $f = \lim\limits_{x \to a}\frac{f(x) - f(a)}{x - a}$ and $h = x - a$
|
||||
|
||||
$\equivalence \lim\limits_{h \to 0} \frac{f(x + h) - f(x)}{h}$
|
||||
\end{proof}
|
||||
|
||||
\langsection{Propriétés}{Proprieties}
|
||||
\langsection{Axiomes}{Axioms}
|
||||
%TODO Complete section
|
||||
|
||||
$f$ est dérivable sur un intervale $I \implies f \in C^1$.
|
||||
|
||||
Remarque : La réciproque est fausse, voir les fonctions de Weierstrass.
|
||||
|
||||
\langsection{Dérivé de fonctions usuelles}{Dérivative of usuals functions}
|
||||
|
||||
\langsubsection{Somme/Soustraction}{Sum/Difference}
|
||||
|
||||
Let $\function{f,g}{I}{\K}$ est dérivable en $a \in I$, $(f + g)' = f' + g'$ ainsi que $(f - g)' = f' - g'$
|
||||
|
||||
\begin{proof}
|
||||
$(f + g)' = \lim\limits_{h \to 0} \frac{[f(x + h) + g(x + h)] - [f(x) + g(x)]}{h} = \lim\limits_{h \to 0} \frac{f(x + h) - f(x)}{h} + \lim\limits_{h \to 0} \frac{g(x + h) - g(x)}{h} = f' + g'$
|
||||
\end{proof}
|
||||
|
||||
With a similar argument, $(f - g)' = f' - g'$
|
||||
|
||||
\langsubsection{Produit}{Product}
|
||||
|
||||
Let $\function{f,g}{I}{\K}$ est dérivable en $a \in I$, $(fg)' = f'g + fg'$
|
||||
|
||||
\begin{proof}
|
||||
|
||||
$\implies (fg)' = \lim\limits_{h \to 0} \frac{f(x + h)g(x + h) - f(x)g(x)}{h}$
|
||||
|
||||
$\implies \lim\limits_{h \to 0} \frac{f(x + h)g(x + h) - f(x)g(x) + f(x + h)g(x) - f(x + h)g(x)}{h}$
|
||||
|
||||
$\implies \lim\limits_{h \to 0} \frac{f(x + h)[g(x + h) - g(x)] + g(x)[f(x + h) - f(x)]}{h}$
|
||||
|
||||
$\implies \lim\limits_{h \to 0} f(x + h) \frac{g(x + h) - g(x)}{h} + g(x) \lim\limits_{h \to 0} \frac{f(x + h) - f(x)}{h}$
|
||||
|
||||
$\implies f'g + fg'$
|
||||
|
||||
\end{proof}
|
||||
|
||||
\langsubsection{Division}{Quotient}
|
||||
|
||||
Soit $\function{f,g}{I}{\K}$ est dérivable en $a \in I$, $(\frac{f}{g})' = \frac{f'g + fg'}{g^2}$
|
||||
|
||||
\begin{proof}
|
||||
|
||||
$\implies (\frac{f}{g})' = \lim\limits_{h \to 0} \frac{\frac{f(x + h)}{g(x + h)} - \frac{f(x)}{g(x)}}{h}$
|
||||
|
||||
$\implies \lim\limits_{h \to 0} \frac{g(x)f(x + h) - f(x)g(x + h)}{g(x)g(x + h)h}$
|
||||
|
||||
$\implies \lim\limits_{h \to 0} \frac{1}{g(x)g(x + h)} [ \frac{g(x)f(x + h) - f(x)g(x + h)}{h} ]$
|
||||
|
||||
$\implies \lim\limits_{h \to 0} \frac{1}{g(x)g(x + h)} [ \frac{g(x)f(x + h) - f(x)g(x + h) + f(x)g(x) - f(x)g(x)}{h} ]$
|
||||
|
||||
$\implies \lim\limits_{h \to 0} \frac{1}{g(x)g(x + h)} [ \frac{g(x)[f(x + h) - f(x)] + f(x)[g(x + h) - g(x)]}{h} ]$
|
||||
|
||||
$\implies \lim\limits_{h \to 0} \frac{1}{g(x)g(x + h)} [ g(x)\frac{[f(x + h) - f(x)]}{h} + f(x)\frac{[g(x + h) - g(x)]}{h} ]$
|
||||
|
||||
$\implies \frac{f'g + fg'}{g^2}$
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{Composition}
|
||||
|
||||
Soit $\function{f,g}{I}{\K}$ est dérivable en $a \in I$, $(f \composes g(x))' = f' \composes g(x) + g'(x)$
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\lipsum[3]
|
||||
|
||||
\end{proof}
|
||||
|
||||
\langsubsection{Exponentiel}{Exponential}
|
||||
|
||||
\subsubsection{Base e}
|
||||
|
||||
Soit $x \in R$ et $\function{f}{\R}{\R}, (e^{f(x)})' = f'(x)e^{f(x)}$
|
||||
|
||||
\begin{proof}
|
||||
\lipsum[3]
|
||||
\end{proof}
|
||||
|
||||
\langsubsubsection{Base arbitraire}{Arbitrary base}
|
||||
|
||||
Soit $x \in \R, b \in \R^*$ et $\function{f}{\R}{\R}, (b^{f(x)})' = f'(x)b^{f(x)}$
|
||||
|
||||
\begin{proof}
|
||||
Soit $x \in \R, b \in \R^*$ et $\function{f}{\R}{\R}$
|
||||
|
||||
Il y plusieurs manières de prouver l'égalité en voici certaines :
|
||||
|
||||
\textbf{Preuve par calcul de limite}
|
||||
|
||||
$$(b^{f(x)})' = \lim\limits_{h \to 0} \frac{b^{x + h} - b^x}{h} = b^x \lim\limits_{h \to 0} \frac{b^h - 1}{h}$$ %TODO Complete proof (find ln trhough limits)
|
||||
|
||||
\textbf{Preuve par la dérivé de $e^{f(x)}$}
|
||||
|
||||
$$(b^{f(x)})' = (e^{f(x)\ln(b)})'$$
|
||||
By the chain rule
|
||||
$$e^{f(x)\ln(b)} f(x)'\ln(b) = f(x)'\ln(b)b^{f(x)}$$
|
||||
\end{proof}
|
||||
|
||||
\langsubsection{Logarithme}{Logarithm}
|
||||
|
||||
\subsubsection{Base e}
|
||||
|
||||
Soit $x \in R^*_+, (\ln(x))' = \frac{1}{x}$
|
||||
|
||||
\begin{proof}
|
||||
Il y plusieurs manières de prouver l'égalité en voici certaines :
|
||||
|
||||
\textbf{Preuve par instantiation}
|
||||
|
||||
Soit $x \in R^*_+$, posons $\frac{d}{dx} x = 1$
|
||||
$$\implies \frac{d}{dx} e^{\ln(x)} = 1$$
|
||||
By the chain rule
|
||||
$$e^{\ln(x)} \frac{d}{dx} \ln(x) = 1 \implies x \frac{d}{dx} \ln(s) = 1 \implies \frac{d}{dx} \ln(s) = \frac{1}{x}$$
|
||||
|
||||
\textbf{Preuve par dérivé implicite}
|
||||
|
||||
Soit $x \in R^*_+$, posons $y = \ln{x}$
|
||||
$$\implies e^y = x \implies \frac{dy}{dx} e^y = 1 \implies \frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{e^{\ln(x)}} \implies \frac{d}{dx} \ln(x) = \frac{1}{x}$$
|
||||
\end{proof}
|
||||
|
||||
\langsubsubsection{Base arbitraire}{Arbitrary base}
|
||||
|
||||
Soit $x \in R^*_+, (\log_b(x))' = \frac{1}{x \ln(b)}$
|
||||
|
||||
\begin{proof}
|
||||
Il y plusieurs manières de prouver l'égalité en voici certaines :
|
||||
|
||||
\textbf{Preuve par instantiation}
|
||||
|
||||
Soit $x \in R^*_+$, posons $\frac{d}{dx} x = 1$
|
||||
$$\implies \frac{d}{dx} b^{\log_b(x)} = 1$$
|
||||
By the chain rule
|
||||
$$\ln(s) b^{\log_b(x)} \frac{d}{dx} \log_b(x) = 1 \implies x \ln(b) \frac{d}{dx} \log_b(s) = 1 \implies \frac{d}{dx} \log_b(s) = \frac{1}{x\ln(b)}$$
|
||||
|
||||
\textbf{Preuve par dérivé implicite}
|
||||
|
||||
Soit $x \in R^*_+$, posons $y = \log_b{x}$
|
||||
$$\implies b^y = x \implies \ln(b) \frac{dy}{dx} b^y = 1 \implies \frac{dy}{dx} = \frac{1}{\ln(b)b^y} = \frac{1}{\ln(b)b^{\log_b(x)}} \implies \frac{d}{dx} \log_b(x) = \frac{1}{x \ln(b)}$$
|
||||
\end{proof}
|
||||
|
||||
\section{Extremums}
|
||||
%TODO Complete section
|
||||
|
||||
|
@ -103,32 +103,6 @@
|
||||
\langsection{Mathématiques}{Mathematics}
|
||||
%TODO Complete section
|
||||
|
||||
\begin{verbatim}
|
||||
\begin{align*}
|
||||
\text{mathnormal (default) - }\mathnormal{RQSZ} \\
|
||||
\text{mathcal - }\mathcal{RQSZ} \\
|
||||
\text{mathfrak - }\mathfrak{RQSZ} \\
|
||||
\text{mathbb - }\mathbb{RQSZ} \\
|
||||
\text{mathrm - }\mathrm{RQSZ} \\
|
||||
\text{mathit - }\mathit{RQSZ} \\
|
||||
\text{mathbf - }\mathbf{RQSZ} \\
|
||||
\text{mathsf - }\mathsf{RQSZ} \\
|
||||
\text{mathtt - }\mathtt{RQSZ}
|
||||
\end{align*}
|
||||
\end{verbatim}
|
||||
|
||||
\begin{align*}
|
||||
\text{mathnormal (default) - }\mathnormal{RQSZ} \\
|
||||
\text{mathcal - }\mathcal{RQSZ} \\
|
||||
\text{mathfrak - }\mathfrak{RQSZ} \\
|
||||
\text{mathbb - }\mathbb{RQSZ} \\
|
||||
\text{mathrm - }\mathrm{RQSZ} \\
|
||||
\text{mathit - }\mathit{RQSZ} \\
|
||||
\text{mathbf - }\mathbf{RQSZ} \\
|
||||
\text{mathsf - }\mathsf{RQSZ} \\
|
||||
\text{mathtt - }\mathtt{RQSZ}
|
||||
\end{align*}
|
||||
|
||||
\subsection{Matrices}
|
||||
%TODO Complete subsection
|
||||
|
||||
|
@ -1,26 +1,22 @@
|
||||
\langchapter{Logique}{Logic}
|
||||
%TODO Complete chapter
|
||||
|
||||
\lang{La logique classique consiste en des opérations effectuées uniquement sur des propositions (typiquement notées $p$ ou $q$) n'ayant pour valeur soit Vrai (noté \true), soit Faux (noté \false).}%
|
||||
{Classical logic consists of operations done on sole values : True $T$ and False $F$.}
|
||||
La logique consiste en des opérations effectuées uniquement sur des variables (notées $P,Q,R$) n'ayant pour valeur soit Vrai (noté \true), soit Faux (noté \false).
|
||||
%Logic consists of operations done on sole values : True $T$ and False $F$.
|
||||
|
||||
\langsection{Principle de tiers exclu}{Excluding middle} \label{definition:law_excluding_middle}
|
||||
\langsection{Principle de tiers exclu}{Excluding middle}
|
||||
|
||||
$\true \equivalence \lnot \false$
|
||||
|
||||
$\false \equivalence \lnot \true$
|
||||
|
||||
$\lnot\lnot p \implies p$
|
||||
|
||||
$p \lor \lnot p$
|
||||
|
||||
\langsection{Relation Binaires}{Binary relations}
|
||||
%TODO Complete section
|
||||
|
||||
\langsubsection{Réflexion}{Reflexivity} \label{definition:reflexivity}
|
||||
% TODO Complete subsection
|
||||
|
||||
Une relation $\Rel$ sur $E$ est dite \textbf{réflexive} si et seulement si $\forall a \in E$, $a \Rel a$.
|
||||
Une relation $\Rel$ sur $E$ est dite \textbf{réflexive} si et seulement si $\forall a \in E, a \Rel a$.
|
||||
|
||||
\langsubsection{Transitivité}{Transitivity} \label{definition:transitivity}
|
||||
% TODO Complete subsection
|
||||
@ -35,21 +31,21 @@ Une relation $\Rel$ sur $E$ est dite \textbf{associative} si et seulement si $\f
|
||||
\langsubsection{Commutativité}{Commutativity} \label{definition:commutativity}
|
||||
% TODO Complete subsection
|
||||
|
||||
Une relation $\Rel$ sur $E$ est dite \textbf{commutative} si et seulement si $\forall (a,b) \in E$, $a \Rel b = b \Rel a$.
|
||||
Une relation $\Rel$ sur $E$ est dite \textbf{commutative} si et seulement si $\forall (a,b) \in E, a \Rel b = b \Rel a$.
|
||||
|
||||
\langsection{Opérateurs}{Operators}
|
||||
%TODO Complete section
|
||||
|
||||
\langsubsection{NON $(\lnot)$}{NOT $(\lnot)$}
|
||||
\langsubsection{NON}{NOT}
|
||||
% TODO Complete subsection
|
||||
|
||||
$p \equivalence \lnot \lnot p$
|
||||
$P \equivalence \lnot \lnot P$
|
||||
|
||||
\langsubsubsection{Table de vérité}{Truth table}
|
||||
|
||||
\begin{tabular}{|c|c|}
|
||||
\hline
|
||||
$p$ & $\lnot p$ \\
|
||||
P & $\lnot P$ \\
|
||||
\hline
|
||||
\false & \true \\
|
||||
\hline
|
||||
@ -57,16 +53,14 @@ $p \equivalence \lnot \lnot p$
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\langsubsection{ET $(\land)$}{AND $(\land)$}
|
||||
\langsubsection{ET}{AND}
|
||||
%TODO Complete subsection
|
||||
|
||||
$p \land q \equivalence \lnot p \lor \lnot q$
|
||||
|
||||
\langsubsubsection{Table de vérité}{Truth table}
|
||||
$P \land Q \equivalence \lnot P \lor \lnot Q$
|
||||
|
||||
\begin{tabular}{|c|c||c|}
|
||||
\hline
|
||||
$p$ & $q$ & $p \land q$ \\
|
||||
P & Q & P $\land$ Q \\
|
||||
\hline
|
||||
\false & \false & \false \\
|
||||
\hline
|
||||
@ -78,16 +72,16 @@ $p \land q \equivalence \lnot p \lor \lnot q$
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\langsubsection{OU $(\lor)$}{OR $(\lor)$}
|
||||
\langsubsection{OU}{OR}
|
||||
% TODO Complete subsection
|
||||
|
||||
$p \lor q \equivalence \lnot p \land \lnot q$
|
||||
$P \lor Q \equivalence \lnot P \land \lnot Q$
|
||||
|
||||
\langsubsubsection{Table de vérité}{Truth table}
|
||||
\medskip
|
||||
|
||||
\begin{tabular}{|c|c||c|}
|
||||
\hline
|
||||
$p$ & $q$ & $p \lor q$ \\
|
||||
P & Q & P $\lor$ Q \\
|
||||
\hline
|
||||
\false & \false & \false \\
|
||||
\hline
|
||||
@ -99,14 +93,12 @@ $p \lor q \equivalence \lnot p \land \lnot q$
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\subsection{Implication $(\implies)$}
|
||||
\subsection{Implication}
|
||||
%TODO Complete subsection
|
||||
|
||||
\langsubsubsection{Table de vérité}{Truth table}
|
||||
|
||||
\begin{tabular}{|c|c||c|}
|
||||
\hline
|
||||
$p$ & $q$ & $p \implies q$ \\
|
||||
P & Q & P $\Rightarrow$ Q \\
|
||||
\hline
|
||||
\false & \false & \true \\
|
||||
\hline
|
||||
@ -118,32 +110,15 @@ $p \lor q \equivalence \lnot p \land \lnot q$
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\lang{Contraposée}{Contraposition} : $\lnot q \implies \lnot p$
|
||||
\lang{Contraposée}{Contraposition } : \
|
||||
$\lnot Q \implies \lnot P$
|
||||
|
||||
\langsubsubsection{Table de vérité}{Truth table}
|
||||
|
||||
\begin{tabular}{|c|c||c|}
|
||||
\hline
|
||||
$p$ & $q$ & $p \implies q$ \\
|
||||
\hline
|
||||
\false & \false & \true \\
|
||||
\hline
|
||||
\true & \false & \false \\
|
||||
\hline
|
||||
\false & \true & \true \\
|
||||
\hline
|
||||
\true & \true & \true \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\langsubsection{Équivalence $(\equivalence)$}{Equivalence $(\equivalence)$}
|
||||
\langsubsection{Équivalence}{Equivalence}
|
||||
% TODO Complete subsection
|
||||
|
||||
\langsubsubsection{Table de vérité}{Truth table}
|
||||
|
||||
\begin{tabular}{|c|c||c|}
|
||||
\hline
|
||||
$p$ & $q$ & $p \equivalence q$ \\
|
||||
$P$ & $Q$ & $P \equivalence Q$ \\
|
||||
\hline
|
||||
\false & \false & \true \\
|
||||
\hline
|
||||
@ -155,16 +130,14 @@ $p \lor q \equivalence \lnot p \land \lnot q$
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\langsubsection{OU exclusif / XOR $(\oplus)$}{Exclusive OR / XOR $(\oplus)$}
|
||||
\langsubsection{OU exclusif / XOR}{Exclusive OR / XOR}
|
||||
%TODO Complete subsection
|
||||
|
||||
$p \oplus q \equivalence (p \lor q) \land \lnot (p \land q)$
|
||||
|
||||
\langsubsubsection{Table de vérité}{Truth table}
|
||||
$P \oplus Q \equivalence (P \lor Q) \land \lnot (P \land Q)$
|
||||
|
||||
\begin{tabular}{|c|c||c|}
|
||||
\hline
|
||||
$p$ & $q$ & $p \oplus q$ \\
|
||||
P & Q & $P \oplus Q$ \\
|
||||
\hline
|
||||
\false & \false & \false \\
|
||||
\hline
|
||||
|
@ -44,8 +44,6 @@
|
||||
\newenvironment{lemme_sq}{\begin{mdframed}\begin{lemme}}{\end{lemme}\end{mdframed}}
|
||||
\newtheorem{prop}{Proposition}
|
||||
\newenvironment{prop_sq}{\begin{mdframed}\begin{prop}}{\end{prop}\end{mdframed}}
|
||||
\newtheorem{corollary}{Corollaire}
|
||||
\newenvironment{corollary_sq}{\begin{mdframed}\begin{corollary}}{\end{corollary}\end{mdframed}}
|
||||
\newcommand{\norm}[1]{\lVert#1\rVert}
|
||||
\newcommand{\Norm}[1]{\lVert #1\rVert}
|
||||
\newcommand{\powerset}[1]{\mathcal{P}(#1)} % Power set
|
||||
|
@ -333,47 +333,3 @@
|
||||
title = {Hyperbolic functions},
|
||||
url = {https://en.wikipedia.org/wiki/Hyperbolic\_functions}
|
||||
}
|
||||
@online{wikipedia_homomorphism,
|
||||
title = {Homomorphism},
|
||||
url = {https://en.wikipedia.org/wiki/Homomorphism}
|
||||
}
|
||||
@online{wikipedia_morphism,
|
||||
title = {Morphism},
|
||||
url = {https://en.wikipedia.org/wiki/Morphism}
|
||||
}
|
||||
@online{wikipedia_linearity,
|
||||
title = {Linearity},
|
||||
url = {https://en.wikipedia.org/wiki/Linearity}
|
||||
}
|
||||
@online{wikipedia_epimorphism,
|
||||
title = {Epimorphism},
|
||||
url = {https://en.wikipedia.org/wiki/Epimorphism}
|
||||
}
|
||||
@online{wikipedia_section_category_theory,
|
||||
title = {Section (category theory)},
|
||||
url = {https://en.wikipedia.org/wiki/Section\_(category_theory)}
|
||||
}
|
||||
@online{wikipedia_ordered_pair,
|
||||
title = {Ordered pair},
|
||||
url = {https://en.wikipedia.org/wiki/Ordered\_pair}
|
||||
}
|
||||
@online{bibmaths_regle_alembert,
|
||||
title = {Règle de d'Alembert},
|
||||
url = {https://www.bibsmath.net/dico/index.php?action=affiche\&quoi=./r/regledalembert.html}
|
||||
}
|
||||
@online{bibmaths_regle_cauchy,
|
||||
title = {Règle de Cauchy},
|
||||
url = {https://www.bibmath.net/dico/index.php?action=affiche\&quoi=./r/reglecauchy.html}
|
||||
}
|
||||
@online{maths_adultes_series_numerique_1,
|
||||
title = {Séries numériques 1/6 : Tous les résultats à connaître},
|
||||
url = {https://www.youtube.com/watch?v=Vs9tBn0rypw}
|
||||
}
|
||||
@online{bibmaths_transformation_critere_abel,
|
||||
title = {Transformation et critère d'Abel},
|
||||
url = {https://www.bibmath.net/dico/index.php?action=affiche\&quoi=./a/abeltransfo.html}
|
||||
}
|
||||
@online{bibmaths_critere_dirichlet,
|
||||
title = {Critère de Dirichlet},
|
||||
url = {https://www.bibmath.net/dico/index.php?action=affiche\&quoi=./d/dirichletcritere.html}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user