\langchapter{Théorie des ensembles}{Set theory} \label{set_theory} %TODO Complete chapter Source: \citeannexes{wikipedia_set_theory} Un ensemble est une construction mathématique qui réuni plusieurs objets en une même instance. %A set is a mathematical construct to assemble multiple objects in a single instance. $S = \{a, b, c\}$ \langsection{Axiomes}{Axioms} %TODO Complete section \langsubsection{Extensionnalité}{Extensionality} $\forall A\forall B(\forall X(X \in A \equivalence X \in B) \implies A = B)$ \langsubsection{Spécification}{Specification} %TODO Complete subsection \langsubsection{Ensemble vide}{Empty set} Il existe un ensemble vide noté $\emptyset$. \langsubsection{Paire}{Pairing} %TODO Complete subsection Source : \citeannexes{wikipedia_ordered_pair} \langsubsubsection{Définition de Wiener}{Wiener's definition} $(a, b) := \{\{\{a\}, \emptyset\}, \{b\}\}$ \langsubsubsection{Définition de Hausdorff}{Hausdorff's definition} $(a, b) := \{\{a, 1\}, \{b, 2\}\}$ where $a \ne 1 \land b \ne 2$ \langsubsubsection{Définition de Kuratowski}{Kuratowski's definition} \begin{definition_sq} \label{definition:ordered_pair} $(a, b)_K := \{\{a\}, \{a, b\}\}$ \end{definition_sq} \langsubsection{Réunion}{Union} Unite all elements of two given sets into one. \begin{definition_sq} \label{definition:set_union} $A \union B := \{x \suchthat (x \in A \lor x \in B)\}$ \end{definition_sq} Pour des ensembles finis : $\forall (E, F) \in \Cat(\Set)^2, \card{E \union F} = \card{E} + \card{F} - \card{E \intersection F}$ Example : $n,m \in \N$ $A := \{a_0, \cdots, a_n\}$ $B := \{b_0, \cdots, b_m\}$ $A \union B = \{a_0, \cdots, a_n, b_0, \cdots, b_m\}$ \langsubsection{Schéma de compréhension}{Scheme of replacement} %TODO Complete subsection \langsubsection{Infini}{Infinity} %TODO Complete subsection \subsection{Power set} %TODO Complete subsection For a set $S$ such that $\card{S} = n \implies \card{\mathbf{P}(S)} = 2^n$ \langsubsection{Choix}{Choice} %TODO Complete subsection \begin{definition_sq} \label{definition:set_axiom_of_choice} For any set $X$ of nonempty sets, there exists a choice function $f$ that is defined on $X$ and maps each set of $X$ to an element of that set i.e. $$\forall X [\emptyset \notin X \implies \exists \function{f}{X}{\Union_{A \in X} A \quad \forall A \in X(f(A) \in A)}]$$ \end{definition_sq} \begin{theorem_sq} \label{theorem:ac_implies_lem} The axiom of choice implies the law of excluding middle. \end{theorem_sq} \begin{proof} Assume that $0 \ne 1$ (or any two elements that are not equal), Let $\Omega := \{0, 1\}$, $p \in \mathbf{Prop}$ $A := \{ x \in \Omega \suchthat x = 0 \lor p \}$ $B := \{ y \in \Omega \suchthat y = 1 \lor p \}$ $\implies 0 \in A \land 1 \in B$ $X := \{ A, B \}$, by definition $\Union X = \Omega$ By the axiom of choice $\implies \exists \function{f}{X}{\Omega}$ Using this function there are 4 cases: \begin{enumerate}[(1)] \item $f(A) = f(B) = 0 \implies 0 \in B$ but $((0 = 1) \lor p \implies \top) \implies p$ \item $f(A) = f(B) = 1$ Same reasoning as (1) $\implies p$ % TODO Replace with local labeling and reference \item $f(A) \neq f(B) = 0 \implies A \neq B$ but $p \implies A = B = \Omega$ (contrapositive of (1) and (2)) $\implies \lnot p$ \item $f(A) \neq f(B) = 1$ Same reasoning as (3) $\implies \lnot p$ \end{enumerate} So by proof by cases $(p \lor \lnot p)$ which is the law of excluded middle \ref{definition:law_excluding_middle}. \end{proof} \section{Intersection} Unite all common elements of two given sets into one. \begin{definition_sq} \label{definition:set_intersection} $A \intersection B := \{x \suchthat (x \in A \land x \in B)\}$ \end{definition_sq} Pour des ensembles finis : $\forall (E, F) \in \Set^2, \card{E \intersection F} = \card{E} - \card{F} + \card{E \union F}$ Example : $n,m \in \N$ $A := \{a_0, \cdots, a_n, c_0, \cdots, c_n\}$ $B := \{b_0, \cdots, b_m, c_0, \cdots, c_n\}$ $A \intersection B = \{c_0, \cdots, c_n\}$ \langsection{Différence des sets}{Set difference} %TODO Complete section Exclude elements of a set from a set \begin{definition_sq} \label{definition:set_difference} $A \setminus B := \{x \suchthat (x \in A \land x \notin B)\}$ \end{definition_sq} Pour des ensembles finis : $\forall (E, F) \in \Set^2, \card{E \setminus F} = \card{E} - \card{E \intersection F}$ \langsection{Fonction}{Function} Source : \citeannexes{wikipedia_function_mathematics} \begin{definition_sq} \label{definition:set_function} Une fonction $f$ est un tuple d'un domaine \citeannexes{wikipedia_domain_function} $A$ et un codomaine \citeannexes{wikipedia_codomain} $B$. \end{definition_sq} If the domain is the same as the codomain then the function is an endormorphsim \ref{definition:endomorphism} applied the category \ref{definition:category} of sets \ref{set_theory}. \subsection{Notation} $\functiondef{A}{B}$ $\function{f}{x}{f(x)}$ \langsubsection{Injectivité}{Injectivity} Source : \citeannexes{wikipedia_injective_function} \begin{definition_sq} \label{definition:injective} Une fonction $f$ de $E$ dans $F$ est dite \textbf{injective} si, et seulement si, $\forall (a,b) \in E, f(a) = f(b) \Rightarrow a = b$. \end{definition_sq} \langsubsection{Surjectivité}{Surjectivity} Source : \citeannexes{wikipedia_surjective_function} \begin{definition_sq} \label{definition:surjective} Une fonction $f$ de $E$ dans $F$ est dite \textbf{surjective} si, et seulement si, $\forall y \in F, \exists x \in E : y = f(x)$. \end{definition_sq} \langsubsection{Bijectivité}{Bijectivity} Source : \citeannexes{wikipedia_bijection} \begin{definition_sq} \label{definition:bijection} Une fonction $f$ de $E$ dans $F$ est dite \textbf{bijective} si, et seulement si, elle est à la fois injective \ref{definition:injective} et surjective \ref{definition:surjective} ou $\forall y \in F, \exists! x \in E : y = f(x)$. \end{definition_sq} Every bijection is an isomorphism \ref{definition:isomorphism} applied on the category \ref{definition:category} of sets \ref{set_theory}.