\langchapter{Trigonométrie}{Trigonometry} %TODO Complete chapter \langsection{Cercle unitaire}{Unit circle} %TODO Complete section Le cercle unitaire est un cercle de centre $(0,0)$ et de rayon 1. \subsection{cos} %TODO Complete subsection $\cos 0 = 1$ $\cos \frac{\pi}{2} = 0$ $\cos \pi = -1$ $\cos(-\frac{\pi}{2}) = 0$ $\cos(\pi + t) = -\cos(t)$ $\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$ $\cos\frac{\pi}{3} = \frac{1}{2}$ $\forall (a,b) \in \R^2$ $\cos(a + b) = \cos a \cos b + \sin a \sin b$ $\cos(a - b) = \cos a \cos b - \sin a \sin b$ $\cos a + \cos b = 2 \cos(\frac{a + b}{2}) \cos(\frac{a - b}{2} )$ \subsection{sin} %TODO Complete subsection $\sin 0 = 0$ $\sin(\pi - t) = \sin(t)$ $\sin(\frac{\pi}{2} - t) = \cos(t)$ $\sin \frac{\pi}{6} = \frac{1}{2}$ $\sin \frac{\pi}{2} = 1$ %$\sin(\frac{\pi}{2} + t) = -\cos(t)$ $\forall (a,b) \in \R^2$ $\sin(a + b) = \sin a \cos b + \sin b \cos a$ $\sin(a - b) = \sin a \cos b - \sin b \cos a$ $\sin a - \sin b = 2 \cos (\frac{a+b}{2}) \sin (\frac{a-b}{2})$ $\sin a\sin b = \frac{\cos(a - b) - \cos(a + b)}{2}$ \subsection{tan} %TODO Complete subsection $\tan 0 = 0$ $\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$ $\tan \frac{\pi}{4} = 1$ $\tan(\frac{\pi}{2} - x) = \frac{1}{\tan x}$ $\tan(\frac{\pi}{2} + x) = -\frac{1}{\tan x}$ $\tan(a + b) = \frac{\tan(a) + \tan(b)}{1- \tan(a)\tan(b)}$ $\tan(a - b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}$ \subsection{Combinaisons} %TODO Complete subsection $\forall (a,b) \in \R^2$ $\sin a \cos b = \frac{\sin(a + b) + \sin(a - b)}{2}$