\langchapter{Théorie des Catégories}{Category theory} %TODO Complete chapter Category is a general theory of mathematical structures and their relations. \langsection{Définition}{Definition} \begin{definition_sq} \label{definition:category} A category $\Cat$ is a collection of objects and morphisms \end{definition_sq} \langsection{Morphismes}{Morphisms} %TODO Complete section \begin{definition_sq} \label{definition:morphism} A morphism $f$ on a category $\Cat$ is a transformation between a domain and a codomain. \end{definition_sq} \langsubsection{Homomorphisme}{Homomorphism} Source : \citeannexes{wikipedia_homomorphism} \begin{definition_sq} \label{definition:homomorphism} A homomorphism is a morphism between two categories that keeps algebraic structures. Let $(X, \star)$ and $(Y, \composes)$ two algebraic structures and let $\function{\phi}{X}{Y}$. $$\forall (x, y) \in X^2, \phi(x \star y) = \phi(x) \composes \phi(y)$$ Similarly, such that the following diagram commutes : \[\begin{tikzcd} X \cartesianProduct X \arrow[r, "\phi \cartesianProduct \phi"] \arrow[d, "\star"] & Y \cartesianProduct Y \arrow[d, "\composes"] \\ X \arrow[r, "\phi"] & Y \end{tikzcd}\] \end{definition_sq} \langsubsection{Section et rétraction}{Section and retraction} let $\function{f}{X}{Y}$ and $\function{g}{Y}{X}$ such that $f \composes g = \identity_Y$ $f$ is a retraction of $g$ and $g$ is a section of $f$. \begin{tikzcd} Y \arrow[r, "g"] \arrow[rd, "1_Y", below] & X \arrow[d, "f"] \\ & Y \end{tikzcd} \subsubsection{Section} Right inverse of a morphism, is the dual of a retraction. A section that is also an epimorphism is an isomorphism \langsubsubsection{Rétraction}{Retraction} Left inverse of a morphism, is the dual of a section. A retraction that is also a monomorphism is an isomorphism \langsubsection{Monomorphisme}{Monomorphism} \label{definition:monomorphism} Source : \citeannexes{wikipedia_monomorphism} A monomorphism is a homomorphism that is injective \ref{definition:injective}, similarly, a morphism that is left-cancellable i.e. Let $\function{f}{X}{Y}$ and $\function{g_1,g_2}{Y}{Z}$, $f \composes g_1 = f \composes g_2 \implies g_1 = g_2$. \[\begin{tikzcd} Z \arrow[r, "g_1", shift left=1ex] \arrow[r, "g_2", shift right=1ex] & X \arrow[r, "f"] & Y \end{tikzcd}\] \langsubsection{Epimorphisme}{Epimorphism} \label{definition:epimorphism} Source : \citeannexes{wikipedia_epimorphism} An epimorphism is a homomorphism that is surjective \ref{definition:surjective}, similarly, a morphism that is right-cancellable i.e. Let $\function{f}{X}{Y}$ and $\function{g_1,g_2}{Y}{Z}$, $g_1 \composes f = g_2 \composes f \implies g_1 = g_2$. \[\begin{tikzcd} X \arrow[r, "f"] & Y \arrow[r, "g_1", shift left=1ex] \arrow[r, "g_2", shift right=1ex] & Z \end{tikzcd}\] \langsubsection{Isomorphisme}{Isomorphism} \label{definition:isomorphism} %TODO Complete section %Source: \citeannexes{wikipedia_isomorphism} Isomorphism is a bijective \ref{definition:bijection} morphism. \langsubsection{Endomorphisme}{Endomorphism} \label{definition:endomorphism} %TODO Complete section %Source: \citeannexes{wikipedia_endomorphisme} \langsubsection{Automorphisme}{Automorphism} \label{definition:automorphism} %TODO Complete section %Source: \citeannexes{wikipedia_automorphism} An automorphism is a morphism that is both an isomorphism \ref{definition:isomorphism} and an endomorphism \ref{definition:endomorphism}. \langsubsection{Homeomorphisme}{Homeomorphism} %TODO Complete section %Source: \citeannexes{wikipedia_homeomorphism} \langsubsection{Diffeomorphisme}{Diffeomorphism} %TODO Complete section %Source: \citeannexes{wikipedia_diffeomorphism} % TODO See difference with an differentiable isomorphism endomorphism continuous map \langsubsection{Exemples}{Examples} \begin{tikzcd} T \arrow[drr, bend left, "x"] \arrow[ddr, bend right, "y"] \arrow[dr, dotted, "{(x,y)}" description] & & \\ & X \times_Z Y \arrow[r, "p"] \arrow[d, "q"] & X \arrow[d, "f"] \\ & Y \arrow[r, "g"] & Z \end{tikzcd} \begin{tikzcd}[column sep=tiny] & \pi_1(U_1) \ar[dr] \ar[drr, "j_1", bend left=20] & &[1.5em] \\ \pi_1(U_1 \union U_2) \ar[ur, "i_1"] \ar[dr, "i_2"'] & & \pi_1(U_1) \ast_{ \pi_1(U_1 \union U_2)} \pi_1(U_2) \ar[r, dashed, "\simeq"] & \pi_1(X) \\ & \pi_1(U_2) \ar[ur]\ar[urr, "j_2"', bend right=20] & & \end{tikzcd} \section{Functors} %TODO Complete section \subsection{Monads} %TODO Complete subsection \langsection{Argument diagonal}{Diagonal argument} %TODO Complete section