2025-03-30 22:05:09 +02:00

617 lines
28 KiB
TeX

\langchapter{Algèbre}{Algebra}
%TODO Complete chapter
\section{Structures}
%TODO Complete section
\subsection{Magma}
\begin{definition_sq} \label{definition:magma}
Un magma est un ensemble $E$ avec une loi de composition interne $\function{\star}{E^2}{E}$ notée $(E, \star)$ tel que $\forall(a, b) \in E, a \star b \in E$.
\end{definition_sq}
Typiquement, pour éviter d'inventer des nouvelles notations pour chaque loi de composition interne, on utilisera des notations déjà familières telles que \textbf{la notation additive (+)} directement héritée de l'addition des entiers naturels, ainsi que \textbf{la notation multiplicative ($\cartesianProduct$)}.
\langsubsection{Magma unital}{Unital magma}
\begin{definition_sq} \label{definition:unital_magma}
Un magma \ref{definition:magma} $(E, \star)$ est dit \textbf{unital} s'il existe un élément appelé \textbf{élément neutre} tel que si combiné avec n'importe quel élément ne le change pas, c'est-à-dire $$\exists \Identity_E \in E, \forall a \in E, \Identity_E \star a = a \star \Identity_E = a$$
\end{definition_sq}
\begin{theorem_sq}
L'élément neutre d'un magma unital $(E, \star)$ est unique.
\end{theorem_sq}
\begin{proof}
Soit $e, f$ deux éléments neutres d'un magma unital $(E, \star)$, par définition d'un élément neutre, on peut poser $e = e \star f = f = f \star e = e$
\end{proof}
\subsection{Monoïde}
\begin{definition_sq} \label{definition:monoid}
Un monoïde $(E, \star)$ est un magma unital \ref{definition:unital_magma} dont la loi de composition est associative \ref{definition:associativity}.
\end{definition_sq}
\langsubsection{Corps}{Field}
\begin{definition_sq} \label{definition:field}
Un corps $(F, +, \star)$ avec deux lois de composition interne $(+)$ et $(\star)$.
\begin{itemize}
\item{$(F, +)$ est un groupe abélien \ref{definition:abelian_group} unital en $\Identity_E$}
\item{$(F\backslash\{\Identity_E\}, \star)$ est un groupe \ref{definition:group}}
\end{itemize}
\end{definition_sq}
\langsubsubsection{Corps commutatif}{Commutative field}
\begin{definition_sq} \label{definition:commutative_field}
Un corps commutatif est un corps \ref{definition:field} dont la seconde loi de composition $(\cartesianProduct)$ est commutative \ref{definition:commutativity}.
\end{definition_sq}
\section{Matrices}
%TODO Complete section
Une matrice est une structure qui permet de regrouper plusieurs éléments d'un corps \ref{definition:field} $\K$ en un tableau de $n$ lignes et $m$ colonnes ou plus et est notée $\mathcal{M}_{n, m}(\K)$. Dans le cas d'une matrice carrée, on peut simplifier la notation en $\mathcal{M}_{n}(\K)$.
\begin{definition_sq} \label{definition:square_matrix}
Une matrice carrée (notée $\mathcal{M}_n(\K)$) est une matrice $\mathcal{M}_{n, m}(\K)$ d'un corps $\K$$n = m$.
\end{definition_sq}
\begin{definition_sq} \label{definition:identity_matrix}
La matrice identité (notée $I_n$) est une matrice carrée \ref{definition:square_matrix} tel que $\forall (i, j) \in \discreteInterval{1, n}^2, M_{i, j} = \begin{cases} i = j & 1 \\ \otherwise & 0 \end{cases}$
\end{definition_sq}
\subsection{Trace}
%TODO Complete subsection
$\forall A \in \mathcal{M}_{n}, tr(A) = \sum\limits_{k = 0}^na_{kk}$
$tr\in\mathcal{L}(\mathcal{M}_n(\K), \K)$
$\forall(A, B)\in\mathcal{M}_{n, p}(\K)\cartesianProduct\mathcal{M}_{p, n}(\K), tr(AB) = tr(BA)$
\langsubsection{Valeurs propres}{Eigenvalues}
%TODO Complete subsection
\subsubsection{Astuces pour le cas 2x2}
Avec $m := \frac{Tr(A)}{2}$
$Eigenvalues = m \pm \sqrt{m^2 - det(A)}$
\langsubsection{Vecteurs propres}{Eigenvectors}
%TODO Complete subsection
\langsubsubsection{Polynôme caractéristique}{Characteristic polyonomial}
%%TODO Complete subsubsection
\langsubsection{Déterminant}{Determinant}
%%TODO Complete subsection
$\function{\det}{\mathcal{M}_{m, n}(\K)}{\R}$
\langsubsubsection{Axiomes}{Axioms}
%%TODO Complete subsubsection
$\forall (A, B) \in \mathcal{M}_{m, n}(\K)^2$
\begin{itemize}
\item{$\forall \lambda \in \K, \det(\lambda A) = \lambda \det(A)$}
\item{$\det(AB) = \det(A) \det(B)$}
\end{itemize}
\langsubsubsection{Cas 2x2}{2x2 case}
%TODO Complete subsubsection
$det\left(\begin{bmatrix}a & b\\c & d\end{bmatrix}\right) = ad - bc$
\langsubsubsection{Cas 3x3}{3x3 case}
%TODO Complete subsubsection
\subsection{Inverse}
\begin{theorem_sq} \label{theorem:matrix_product_monoid}
Le tuple $(M_n(\K), \cartesianProduct)$ est un monoïde.
\end{theorem_sq}
\begin{proof}
Par définition la loi de composition $(\cartesianProduct)$ est un magma.
%TODO Complete proof part of associativity
La matrice $\Identity_n$ est l'élément neutre.
\end{proof}
\begin{theorem_sq}
$\lnot(\forall (A, B, M) \in M_n(\K)^3, (M \ne 0 \land MA = MB) \equivalence A = B)$
\end{theorem_sq}
\begin{proof}
Soit $(A, B, M) \in M_2(\K)^3$ tel que
$M := \begin{pmatrix} 3 & -12 \\ -1 & 4 \end{pmatrix}$ \hspace{3mm} $A := \begin{pmatrix} 5 & 9 \\ 3 & 4 \end{pmatrix}$ \hspace{3mm} $B := \begin{pmatrix} 1 & -3 \\ 2 & 1 \end{pmatrix}$
$MA = MB = \begin{pmatrix} -21 & -21 \\ 7 & 7 \end{pmatrix}$ alors que $M \ne 0 \land A \ne B$
\end{proof}
\begin{theorem_sq}
$\lnot(\forall (A, B) \in M_n(\K)^2, AB = 0 \implies A = 0 \lor B = 0)$
\end{theorem_sq}
\begin{proof}
Soit $(A, B) \in M^*_2(\K)^2$ tel que
$A := \begin{pmatrix} 3 & -12 \\ -2 & 8 \end{pmatrix}$ \hspace{5mm} $B := \begin{pmatrix} 4 & 12 \\ 1 & 3 \end{pmatrix}$
$AB = 0_2$ alors que $A \ne 0 \land B \ne 0$
\end{proof}
\begin{definition_sq} \label{definition:inversible_matrix}
Une matrice $A \in M_n(\K)$ est dite \textbf{inversible} sur $\K$ si et seulement s'il existe une matrice dite \textbf{inverse} $B \in M_n(\K)$ tel que $AB = \Identity_n = BA$.
Nous pourrons noter cette inverse $A^{-1}$.
\end{definition_sq}
- La matrice identité est son propre inverse : $\Identity_n \cartesianProduct \Identity_n = \Identity_n$
- Les matrices de transvection $T_{i, j}(a)$ sont inversibles : $(T_{i, j}(a))^{-1} = T_{i, j}(-a)$
- Les matrices de dilatation $D_i(a)$ sont inversibles : $(D_i(a))^{-1} = D_i(a^{-1})$
- Les matrices de permutation $P_{i, j}$ sont inversibles : $(P_{i, j})^{-1} = P_{j, i}$
\begin{definition_sq} \label{definition:linear_group}
L'ensemble des matrices inversibles est appelé \textbf{groupe linéaire} et est noté $GL_n(\K)$.
\end{definition_sq}
\begin{theorem_sq}
Le tuple $(GL_n(\K), \cartesianProduct)$ est un groupe \ref{definition:group}.
\end{theorem_sq}
\begin{proof}
L'ensemble des matrices inversibles sont également des matrices, donc $GL_n(\K) \subseteq M_n(\K)$ or le tuple $(M_n(\K), \cartesianProduct)$ est un monoïde \ref{theorem:matrix_product_monoid} et $GL_n(\K)$ ne garde que les matrices qui sont inversibles et cela constitue la définition d'un groupe \ref{definition:group}.
\end{proof}
\begin{theorem_sq}
La transposée d'un inverse et l'inverse de la transposée c.-à-d. : $\forall A \in GL_n(\K), (A^{-1})^T = (A^T)^{-1}$
\end{theorem_sq}
\begin{proof}
$\forall A \in GL_n(\K), (A^{-1})^T A^T = (AA^{-1})^T = \Identity_n^T = \Identity_n \land A^T(A^{-1})^T = (A^{-1}A)^T = \Identity_n^T = \Identity_n$
\end{proof}
\begin{theorem_sq}
$\forall (A, B) \in M_n(\K)^2, \forall M \in GL_n(\K), (MA = MB) \equivalence A = B$
\end{theorem_sq}
\begin{proof}
Soit $(A, B) \in M_n(\K)^2, M \in GL_n(\K)$ tel que $MA = MB$
$\exists M^{-1} \in GL_n(\K), M^{-1}M = \Identity_n \implies M^{-1}(MA) = M^{-1}(MB) \equivalence (M^{-1}M)A = (M^{-1}M)B \equivalence A = B$
\end{proof}
\begin{lemme_sq} \label{lemma:inversible_matrix_reduction_dilatation}
Pour toute matrice inversible $A$, il existe une suite finie de matrices de transvection $M_p$ que transforme $A$ en une matrice de dilatation, c'est-à-dire
$$A \prod\limits_{i = 1}^p M_i = D_n(\det(A))$$
\end{lemme_sq}
\begin{proof}
Par récurrence sur $n$. Le cas d'initialisation $n = 1$ est immédiat.
Passons à l'hérédité. Soit $A \in GL_n(\K)$ avec $n \ge 2$ et supposons l'hypothèse $h$ au rang $n - 1$.
Appliquons l'algorithme du pivot de Gauss.
Comme A est inversible, sa première colonne est nécessairement non nulle.
Si $a_{11} \ne 1$, s'il existe $i > 1$ tel que la matrice de transvection $T_{1, i}(\frac{1 - a_{11}}{a_{i1}})$ permet de mettre un coefficient 1 en position $(1, 1)$.
Dans le cas ou $a_{11} \ne 1$ et qu'il s'agit du seul coefficient non nul de la colonne, nous pouvons ajouter la matrice de transvection $T_{2, 1}(1)$ pour nous ramener au cas précédent.
Ensuite, en utilisant le coefficient $(1, 1)$ comme pivot, une succession d'opérations sur les lignes puis sur les
colonnes permet d'annuler tous les autres coefficients de la première ligne et de la première colonne, cela permet d'affirmer qu'il existe une suite finie de matrices de transvection $M_k$ telles que
$A \prod\limits_{i = 1}^k M_i = \begin{pmatrix} 1 & 0 \\ 0 & A' \end{pmatrix}$
$A' \in GL_{n - 1}(\K)$ ainsi que $\det(A') = \det(A)$.
En appliquant l'hypothèse $h$ on conclut l'hérédité.
\end{proof}
\begin{theorem_sq}
L'ensemble des matrices de transvection et de dilatation engendre le groupe $GL_n(\K)$.
\end{theorem_sq}
\begin{proof}
Soit $A \in GL_n(\K)$, sachant \ref{lemma:inversible_matrix_reduction_dilatation}, il existe une suite finie de matrices de transvection $M_p$ que transforme $A$ en une matrice de dilatation $D_n(det(A))$, or comme une matrice de dilatation est inversible, on peut conclure que
$$A \left(\prod\limits_{i = 1}^p M_i \right) D_n(\det(A)^{-1}) = \Identity_n$$
\end{proof}
\begin{theorem_sq}
Une matrice $A \in M_n(\K)$ est inversible si et seulement si son rang est égal à son ordre (c'est-à-dire $\rank{A} = n$)
\end{theorem_sq}
\begin{proof}
Soit $A \in M_n(\K)$
\impliespart
Supposons que la matrice $A$ est inversible, c'est-à-dire qu'il existe une matrice $A^{-1}$ telle que $AA^{-1} = A^{-1}A = \Identity_n$.
% \Limpliespart
% Supposons que $\rank{A} = n$.
% Sachant que les matrices de dilatation et transvection conservent le rang, et que la matrice identité $\Identity_n$ à un rang de $n$
% alors, nous pouvons créer une séquence finie de $k$ matrices de dilatation et de transvection tel que $A = \prod\limits_{i = 1}^k E_i$.
% Hors comme toutes les matrices de dilation te de transvection sont inversibles ainsi que leur produit, ainsi, nous pouvons créer une autre séquence finie $B = \prod\limits_{i = 1}^k (E_{k - i - 1})^{-1}$.
% On remarque de $AB = \left(\prod\limits_{i = 1}^k E_i\right) \left(\prod\limits_{i = 1}^k (E_{k - i - 1})^{-1}\right) = \prod\limits_{i = 1}^k \Identity_n = \Identity_n$.
% Donc, non seulement $A$ est inversible, mais avons aussi un algorithme qui permet de calculer sa matrice inverse.
% TODO Fix garbage AI proof...
% Dans cet article, nous prouvons que si le rang d'une matrice $A$ est égal à son ordre (taille),
% alors la matrice $A$ est inversible en utilisant des matrices élémentaires.
%
% Supposons que la matrice $A \in M_n(\K)$ et que $\rank{A} = n$.
%
% Montrer qu'il existe une matrice inversible composée de matrices élémentaires.
%
% Supposons que $A$ est une matrice de taille $n$ avec $\rank{A} = n$.
% Nous savons que pour toute opération sur les lignes (ou les colonnes),
% la matrice résultante aura un rang égal ou inférieur à la matrice originale $A$.
% Par conséquent, nous pouvons effectuer une séquence d'opérations élémentaires sur les lignes de $A$ sans changer son rang.
%
% Soit $E_1, E_2, \ldots, E_k$ ces matrices élémentaires telles que leur produit est également une matrice élémentaire. Nous avons $A = \prod\limits_{i = 1}^n E_i$
%
% Puisque $\rank{A} = n$, et que chaque $E_i$ maintient le rang, il s'ensuit que toutes ces matrices sont des matrices élémentaires avec un élément pivot non nul (elles ne peuvent pas être la matrice zéro).
% On peut donc construire une matrice inversible composée uniquement de ces matrices élémentaires :
% \[ B = E_1(E_2(\cdots E_k(I_n))\cdots) \]
% Cette matrice $B$ est clairement inversible puisqu'elle a un pivot non nul dans chaque ligne (ou colonne), et donc son rang est égal à l'ordre de la matrice originale $A$.
% Ainsi, nous avons montré que si $\rank{A} = n$, il existe une matrice inversible composée uniquement de matrices élémentaires.
Ok
Ok
Ok
\impliespart
Since $AA^{-1} = I_n$, the columns of $A$ must be linearly independent.
To see this, suppose the columns of $A$ are linearly dependent. Then there exist scalars $c_1, c_2, ..., c_n$, not all zero, such that
$$c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2 + \dots + c_n \mathbf{a}_n = \mathbf{0}$$
where $\mathbf{a}_i$ are the columns of $A$. This can be written as $A\mathbf{c} = \mathbf{0}$, where $\mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$ is a non-zero vector.
If $A$ is invertible, then we can multiply both sides by $A^{-1}$:
$$A^{-1}A\mathbf{c} = A^{-1}\mathbf{0} \implies \mathbf{c} = \mathbf{0}$$
But this contradicts our assumption that $\mathbf{c}$ is a non-zero vector. Therefore, the columns of $A$ must be linearly independent.
Since $A$ is an $n \times n$ matrix with $n$ linearly independent columns, the column space of $A$ has dimension $n$. Therefore, rank$(A) = n$.
\Limpliespart
$\rank{A} = n$ implies that $A$ is an $n \times n$ matrix with $n$ linearly independent rows.
Since the columns of $A$ are linearly independent and span $\K^n$, any vector $\mathbf{b} \in \K^n$ can be written as a linear combination of the columns of $A$. In other words, for any $\mathbf{b} \in \K^n$, the equation $A\mathbf{x} = \mathbf{b}$ has a solution. Since the columns are linearly independent, the solution is unique.
Consider the system $A\mathbf{x} = \mathbf{e}_i$, where $\mathbf{e}_i$ is the $i$-th standard basis vector in $\K^n$ (i.e., a vector with a 1 in the $i$-th position and 0s elsewhere). Since rank$(A) = n$, this system has a unique solution for each $i = 1, 2, ..., n$. Let $\mathbf{x}_i$ be the unique solution to $A\mathbf{x} = \mathbf{e}_i$.
Now, construct a matrix $B$ whose columns are the vectors $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n$. Then $AB$ is a matrix whose $i$-th column is $A\mathbf{x}_i = \mathbf{e}_i$. Therefore, $AB = I_n$.
Since $AB = I_n$, we have shown that $A$ has a right inverse. For square matrices, if a right inverse exists, then it is also a left inverse. Therefore, $BA = I_n$ as well. Thus, $B = A^{-1}$, and $A$ is invertible.
\end{proof}
\begin{definition_sq} \label{definition:special_linear_group}
L'ensemble \textbf{groupe spécial linéaire} noté $SL_n(\K)$ est le sous ensemble de $GL_n(\K)$ tel que le déterminant est égale à 1, c'est-à-dire
$$SL_n(\K) := \{ A \in GL_n(\K) \suchthat \det(A) = 1\}$$
\end{definition_sq}
\begin{theorem_sq}
$SL_n(\K) \normalSubgroup GL_n(\K)$
\end{theorem_sq}
\begin{proof}
Grâce aux propriétés du déterminant, on peut vérifier chaque axiome d'un sous-groupe \ref{definition:subgroup}
\begin{itemize}
\item{Magma : $\forall (A, B) \in SL_n(\K)^2, \det(AB) = \det(A)\det(B) = 1 \cdot 1 = 1 \implies AB \in SL_n(\K)$}
\item{Présence de l'identité : $\det(\Identity_n) = 1 \implies \Identity_n \in SL_n(\K)$}
\item{Présence de l'inverse : $\forall A \in SL_n(\K), \exists! A^{-1} \in GL_n(\K), 1 = \det(\Identity_n) = \det(AA^{-1}) = \det(A)\det(A^{-1}) = \det(A^{-1}) \implies A^{-1} \in SL_n(\K)$}
\end{itemize}
Pour montrer qu'il s'agit d'un sous-groupe distingué, posons $x \in GL_n(\K)$ et $y \in SL_n(\K)$, nous pouvons en conclure
$\det(xyx^{-1}) = \det(x)\det(y)\det(x)^{-1} = 1 \implies xyx^{-1} \in SL_n(\K)$
\end{proof}
\begin{theorem_sq}
L'ensemble des matrices de transvection engendre $SL_n(\K)$ \ref{definition:special_linear_group}.
\end{theorem_sq}
\begin{proof}
Soit $A \in SL_n(\K)$, sachant \ref{lemma:inversible_matrix_reduction_dilatation}, il existe une suite finie de matrices de transvection $M_p$ que transforme $A$ en une matrice de dilatation $D_n(det(A))$, or comme $\det(A) = 1$ cela revient à la matrice identité, on peut donc en conclure que
$$A \prod\limits_{i = 1}^p M_i = \Identity_n$$
\end{proof}
\begin{theorem_sq}
Une matrice $A \in M_n(\K)$ est inversible sur $\K$ si et seulement si $det(A) \neq 0$.
\end{theorem_sq}
\begin{proof}
\lipsum[2]
% TODO Complete proof
\end{proof}
\langsubsection{Diagonalisation}{Diagonalization}
%TODO Complete subsection
\begin{definition_sq} \label{definition:diagonalizable_matrix}
Une matrice $A \in M_n(\K)$ est dite \textbf{diagonalisable} sur $\K$ s'il existe une matrice inversible \ref{definition:inversible_matrix} $P \in GL_n(\K)$ ainsi qu'une matrice diagonale $D \in M_n(\K)$ tel que $A = PDP^{-1}$
\end{definition_sq}
\langsubsection{Orthogonalité}{Orthogonality}
%TODO Complete subsection
$det(M) \in \{-1, 1\}$
\subsection{Triangulation}
%TODO Complete subsection
$a \in Tr_n$
\subsection{Exponentiation}
%TODO Complete subsection
\begin{definition_sq} \label{definition:exponentiation_matrix}
Pour $A \in M_n(\K)$, on définit
$$e^A := \sum\limits_{n = 0}^{+\infty} \frac{A^n}{n!}$$
\end{definition_sq}
\begin{theorem_sq}
Pour tout $A \in M_n(\K)$ converge dans $M_n(\K)$.
\end{theorem_sq}
\begin{proof}
Soit $A \in M_n(\K)$ ainsi qu'une norme subordonnée quelconque $\matrixnorm{.}$.
$$\forall n \in \N, \left\lVert \frac{A^n}{n!} \right\rVert \le \frac{\matrixnorm{A^n}}{n!}$$
\end{proof}
\begin{theorem_sq}
Pour tout $A, B \in M_n(\K)$ tel que $AB = BA$ alors $e^{A + B} = e^A e^B = e^B e^A$.
\end{theorem_sq}
\begin{proof}
Soit $A, B \in M_n(\K)$ tel que $AB = BA$. Posons $U_n := \frac{A^n}{n!}$ et $V_n := \frac{B^n}{n!}$, comme $U_n$ et $V_n$ converge absolument, leur produit de série $W_n := \sum\limits_{n \in \N} U_n \sum\limits_{k \in \N} V_k$ aussi. Hors,
$$W_n = \sum\limits_{k = 0}^n U_k V_{n - k} = \sum\limits_{k = 0}^n \frac{A^n}{n!} \frac{B^{(n - k)}}{(n - k)!}$$
comme $AB = BA$ et en tendant $n$ vers l'infini cela donne $\lim\limits_{n \to +\infty} W_n = e^A e^B = e^B e^A$
Sachant la formule du binôme de Newton $(A + B)^n = \sum\limits_{k = 0}^n \frac{n!}{k! (n - k)!} A^k B^{n - k}$
$$W_n = \sum\limits_{k = 0}^n \frac{A^n}{n!} \frac{B^{(n - k)}}{(n - k)!} = \sum\limits_{k = 0}^n \frac{(A + B)^n}{n!}$$
en tendant $n$ vers l'infini cela donne $\lim\limits_{n \to +\infty} W_n = e^{A + B}$
\end{proof}
\begin{theorem_sq}
Pour tout $A \in M_n(\K)$, $e^A$ est inversible \ref{definition:inversible_matrix} et $(e^A)^{-1} = e^{-A}$
\end{theorem_sq}
\begin{proof}
Soit $A \in M_n(\K)$, comme $A(-A) = -AA$ alors $e^{-A} e^A = e^A e^{-A} = e^{A - A} = e^0 = \Identity_n$
\end{proof}
\langsection{Formes quadratiques}{Quadratic forms}
\begin{definition_sq} \label{definition:quadratic_form}
On appelle \textbf{forme quadratique} sur $E$ toute application $\function{q}{E}{\R}$ telle qu'il existe une forme bilinéaire symétrique \ref{definition:bilinear_form} $\function{b}{E \cartesianProduct E}{\R}$ telle que $\forall x \in E, q(x) = b(x, x)$
\end{definition_sq}
\begin{prop_sq}
Si $q$ une forme quadratique \ref{definition:quadratic_form}, alors la forme bilinéaire $b$ associée est unique, déterminé par les \textbf{formules de polarisation}
$$b(x, y) = \frac{1}{2}\left(q(x + y) - q(x) - q(y)\right)$$
$$= \frac{1}{4}\left(q(x + y) - q(x - y)\right)$$
On dit alors que $b$ est la \textbf{forme polaire} de $q$.
\end{prop_sq}
\begin{proof}
Soit $q$ une forme quadratique \ref{definition:quadratic_form} ainsi que ça forme bilinéaire $b$ associée. Comme $\forall x \in E, q(x) = b(x, xx)$, on peut développer, par bilinéarité et symétrie de $b$, pour obtenir
$$q(x + y) = b(x + y, x + y) = b(x, x) + 2b(x, y) + b(y, y) = q(x) + 2b(x, y) + q(y)$$
Ainsi que
$$q(x - y) = b(x - y, x - y) = b(x, x) - 2b(x, y) + b(y, y) = q(x) - 2b(x, y) + q(y)$$
Les deux formules de polarisation s'en déduisent immédiatement.
\end{proof}
\langsection{Espaces vectoriels}{Vectors spaces}
\begin{definition_sq} \label{definition:vector_space}
Un espace vectoriel $(E(\K), +, \cartesianProduct)$ sur un corps $\K$ est un tuple
Soit $(E, +)$ un groupe abélien \ref{definition:abelian_group} de $\K$
\begin{itemize}
\item{muni d'une loi de composition externe d'un corps $\K$ tel que $\function{(\cdot)}{K \cartesianProduct E}{E}$ vérifiant $(\alpha, x) \rightarrow \alpha x$}
\end{itemize}
\bigskip
Et vérifiant $\forall(\alpha, \beta) \in \K^2, \forall(a, b, c) \in E^3$
\begin{itemize}
\item{Unital en $(\cdot)$}
\item{Distributivité (gauche et droite) $+$ de $\K \equivalence a(\alpha + \beta) = (\alpha + \beta)a = \alpha a + \beta a$}
\item{Distributivité (gauche et droite) $*$ de $\K \equivalence a(\alpha * \beta) = (\alpha * \beta)a = \alpha(\beta a)$}
\end{itemize}
\end{definition_sq}
\begin{definition_sq} \label{definition:vector_space_free_family}
Une famille \suite{e} est dite \textbf{libre} si la seule combinaison linéaire qui annule \suite{e} est la combinaison linéaire nulle, c'est-à-dire
$$\forall \lambda \in \K^n, \sum\limits_{i = 1}^n \lambda_i e_i = 0 \implies \lambda_i = 0$$
\end{definition_sq}
\begin{definition_sq} \label{definition:vector_space_generating_family}
Une famille \suite{e} est dite \textbf{génératrice} d'un espace vectoriel \ref{definition:vector_space} $E$ si pour tout vecteur $v$ de $E$ il existe une combinaison linéaire de \suite{e} égale à $v$, c'est-à-dire
$$\forall v \in E, \exists \lambda \in \K^n, \sum\limits_{i=1}^n \lambda_i e_i = v$$
\end{definition_sq}
\langsubsection{Bases}{Basis} \label{definition:vector_space_basis}
\begin{definition_sq}
Une famille est appelée une \textbf{base} de $E$ si elle est libre \ref{definition:vector_space_free_family} et génératrice \ref{definition:vector_space_generating_family} $\equivalence \forall v \in E, \exists! \lambda \in \K^n, \sum\limits_{i=1}^n \lambda_i e_i = v$
\end{definition_sq}
\subsection{Dimension} \label{definition:vector_space_dimension}
%TODO Complete subsection
\langsubsubsection{Rang}{Rank} \label{definition:vector_space_rank}
%TODO Complete subsubsection
\begin{theorem_sq} \label{theorem:vector_space_rank}
Soit $E$ et $G$ $K$-e.v \ref{definition:sub_vector_space} et $\function{\phi}{E}{F}$.
$\dim E = \dim \ker(\phi) + \dim im(\phi) = \dim \ker(\phi) = \rank{\phi}$
\end{theorem_sq}
\langsubsection{Sous-espaces vectoriels}{Sub vector spaces} \label{definition:sub_vector_space}
%TODO Complete subsection
Soit $E$ un $\K$-espace vectoriel \ref{definition:vector_space}, $F$ est un sous-espace vectoriel (parfois notée « s.e.v ») si $F \subset E$ ainsi que les propriétés suivantes :
\begin{itemize}
\item{$F \ne \emptyset$}
\item{$\Identity_E \in F$}
\item{$\forall(\alpha, \beta) \in \K^2, \forall(x, y)\in F^2, \alpha x + \beta y \in F$}
\end{itemize}
\begin{theorem_sq} \label{theorem:union_sub_vector_spaces}
Soit $F$ et $G$ s.e.v \ref{definition:sub_vector_space} de $E$. « $F \union G$ est un s.e.v de $E$ » $ \equivalence (F \subset G) \lor (G \subset F)$.
\end{theorem_sq}
\begin{proof}
Soit $F$ et $G$ s.e.v \ref{definition:sub_vector_space} de $E$.
\impliespart
$(F \subset G) \lor (G \subset F) \implies (G $ s.e.v de $E) \lor (F $ s.e.v de $E) \implies (F \union G)$ s.e.v de $E$.
\Limpliespart
$(F \union G) $ s.e.v de $E \land [(F \not\subset G) \land (G \not\subset F)]$
Let $x \in F \setminus G$ and $y \in G \setminus F$
$(F\union G)$ s.e.v de $E \implies x + y \in F \union G$
B.W.O.C let's suppose $x + y \in F \setminus G$
$\implies (x + y) - x \in F \setminus G$
$\implies y \in F \setminus G \land y \in G \setminus F \implies \bot$
By a similar argument $y \notin G \setminus F$
$\implies (y \notin F \setminus G) \land (y \notin G \setminus F) \implies \bot$
$\implies F \subset G \lor G \subset F$
\end{proof}
\langsubsection{Application linéaire}{Linear map} \label{definition:linearity}
\begin{definition_sq} \label{definition:linear_map}
Une application $\function{f}{\K}{\K}$ est une \textbf{application linéaire} d'un $\K$-espace vectoriel $E$ si il respecte les axiomes suivants :
\begin{itemize}
\item{\lang{Additivité}{Additivity} : $\forall(x, y) \in E^2, f(x + y) = f(x) + f(y)$}
\item{\lang{Homogénéité}{Homogeneity} : $\forall a \in \K, \forall x \in E, f(a x) = a f(x)$}
\end{itemize}
\lang{Ou de manière plus succincte}{Or a faster way)} : $\forall a \in \K, \forall(x, y) \in E^2, f(x + a y) = f(x) + a f(y)$
Une application linéaire donc est un morphisme \ref{definition:morphism} appliqué à la catégorie \ref{definition:category} des espaces vectoriels \ref{definition:vector_space}.
\end{definition_sq}
\langsubsection{Forme bilinéaire}{Bilinear form}
\begin{definition_sq} \label{definition:bilinear_form}
Une forme bilinéaire est une application $\function{B}{E^2}{\K}$ sur un $\K$-espace vectoriel $E$ qui est linéaire sur les deux arguments tel qui respecte les axiomes suivants :
$\forall (u, v, w) \in E^3, \forall a \in \K$
\begin{itemize}
\item{$B(u + v, w) = B(u, w) + B(v, w)$}
\item{$B(a u, w) = B(u, a w) = a B(u, w)$}
\item{$B(u, w + v) = B(u, v) + B(u, w)$}
\end{itemize}
\end{definition_sq}
\begin{definition_sq} \label{definition:symmetric_bilinear_form}
Une forme bilinéaire \ref{definition:bilinear_form} $\function{B}{E^2}{\K}$ est dite \textbf{symétrique} si $\forall (u, v) \in E^2, B(u, v) = B(v, u)$.
\end{definition_sq}
\langsubsection{Produit scalaire}{Inner product}
\begin{definition_sq} \label{definition:inner_product}
Un produit scalaire notée $\innerproduct{-}{-}$ sur un $\K$-espace vectoriel $E$ est une forme bilinéaire \ref{definition:bilinear_form} qui respecte les axiomes suivants :
\begin{itemize}
\item{Symétrie : $\forall(x, y) \in E^2, \innerproduct{x}{y} = \innerproduct{y}{x}$}
\item{Non-dégénérescence : $\forall x \in E, \innerproduct{x}{x} = 0 \implies x = 0$}
\end{itemize}
\end{definition_sq}
\langsubsubsection{Produit scalaire réel}{Real inner product}
\begin{definition_sq} \label{definition:real_inner_product}
Un produit scalaire réel est un produit scalaire \ref{definition:inner_product} d'un $\R$-espace vectoriel \ref{definition:vector_space}.
\end{definition_sq}
\langsubsubsection{Produit scalaire complexe}{Complex inner product}
\begin{definition_sq} \label{definition:complex_inner_product}
Un produit scalaire complexe est un produit scalaire \ref{definition:inner_product} d'un $\C$-espace vectoriel \ref{definition:vector_space}.
\end{definition_sq}
\langsubsection{Norme}{Norm}
\begin{definition_sq} \label{definition:norm}
Une norme notée $\norm{.}_E$ sur un $\K$-espace vectoriel \ref{definition:vector_space} $E$ est une application $\function{\norm{.}}{K}{\R_+}$ qui respecte les axiomes suivants :
\begin{itemize}
\item{Séparation : $\forall x \in E, \norm{x} = 0 \implies x = 0$}
\item{Homogénéité : $\forall x \in E, \forall \lambda \in \K, \norm{\lambda x} = \abs{\lambda}\norm{x}$}
\item{Inégalité triangulaire : $\forall (x, y) \in E^2, \norm{x + y} \le \norm{x} + \norm{y}$}
\end{itemize}
\end{definition_sq}
\langsubsubsection{Norme réelle}{Real norm}
\begin{definition_sq} \label{definition:real_norm}
Une norme réelle est une norme \ref{definition:norm} d'un $\R$-espace vectoriel \ref{definition:vector_space}.
\end{definition_sq}
\langsubsubsection{Norme complexe}{Complex norm}
\begin{definition_sq} \label{definition:complex_norm}
Une norme complexe est une norme \ref{definition:norm} d'un $\C$-espace vectoriel \ref{definition:vector_space}.
\end{definition_sq}
\langsubsection{Espace pré-hilbertien}{Pre-hilbertian Space}
\begin{definition_sq} \label{definition:prehilbertian_space}
Un $\K$-espace vectoriel $E$ muni d'un produit scalaire $\innerproduct{-}{-}$ noté comme un tuple $(E, \innerproduct{-}{-})$ est appelé un \textbf{espace pré-hilbertien}.
\end{definition_sq}
\langsubsection{Espace Euclidien}{Euclidian Space}
\begin{definition_sq} \label{definition:euclidian_space}
Un \textbf{espace euclidien} est un espace pré-hilbertien \ref{definition:prehilbertian_space} réel à dimension finie.
\end{definition_sq}
\langsubsection{Espace Hermitien}{Hermitian Space}
\begin{definition_sq} \label{definition:hermitian_space}
Un \textbf{espace hermitien} est un espace pré-hilbertien \ref{definition:prehilbertian_space} complexe à dimension finie.
\end{definition_sq}