21 lines
743 B
TeX
21 lines
743 B
TeX
\langchapter{Combinatoire}{Combinatorics}
|
|
%TODO Complete chapter
|
|
|
|
\langsection{Formules}{Formulas}
|
|
|
|
$\prod\limits_{k=1}^{n} k = 1 \times 2 \times 3 \times \cdots \times n = n!$
|
|
|
|
$\prod\limits_{k=1}^{n} 2k = 2 \times 4 \times 6 \times \cdots \times 2n = 2^n n!$
|
|
|
|
$\prod\limits_{k=1}^{n} (2k - 1) = 1 \times 3 \times 5 \times \cdots \times (2n + 1) = \frac{(2n + 1)!}{2^n n!}$
|
|
|
|
$\sum\limits_{k=0}^n \binom{n}{k} = 2^n$
|
|
|
|
$\binom{n}{k}=\left\{\begin{aligned} &\frac{n!}{k!(n - k)!} & & \text{si } k \in \discreteInterval{0,n} \\ &0 & &\text{sinon} \end{aligned}\right.$
|
|
|
|
$\forall n \in \N,\forall k \in \Z, \binom{n}{n-k} = \binom{n}{k}$
|
|
|
|
Formule de Pascal
|
|
|
|
$\forall n \in \N, \forall k \in \Z, \binom{n}{k - 1} + \binom{n}{k} = \binom{n + 1}{k}$
|