96 lines
1.9 KiB
TeX
96 lines
1.9 KiB
TeX
\langchapter{Trigonométrie}{Trigonometry}
|
|
%TODO Complete chapter
|
|
|
|
\langsection{Cercle unitaire}{Unit circle}
|
|
%TODO Complete section
|
|
|
|
Le cercle unitaire est un cercle de centre $(0,0)$ et de rayon 1.
|
|
|
|
\subsection{cos}
|
|
%TODO Complete subsection
|
|
|
|
$\cos 0 = 1$
|
|
|
|
$\cos \frac{\pi}{2} = 0$
|
|
|
|
$\cos \pi = -1$
|
|
|
|
$\cos(-\frac{\pi}{2}) = 0$
|
|
|
|
$\cos(\pi + t) = -\cos(t)$
|
|
|
|
$\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$
|
|
|
|
$\cos\frac{\pi}{3} = \frac{1}{2}$
|
|
|
|
$\forall (a,b) \in \R$
|
|
|
|
$\cos(a + b) = \cos a \cos b + \sin a \sin b$
|
|
|
|
$\cos(a - b) = \cos a \cos b - \sin a \sin b$
|
|
|
|
$\cos a + \cos b = 2 \cos(\frac{a + b}{2}) \cos(\frac{a - b}{2} )$
|
|
|
|
\subsection{sin}
|
|
%TODO Complete subsection
|
|
|
|
$\sin 0 = 0$
|
|
|
|
$\sin(\pi - t) = \sin(t)$
|
|
|
|
$\sin(\frac{\pi}{2} - t) = \cos(t)$
|
|
|
|
$\sin \frac{\pi}{6} = \frac{1}{2}$
|
|
|
|
$\sin \frac{\pi}{2} = 1$
|
|
|
|
%$\sin(\frac{\pi}{2} + t) = -\cos(t)$
|
|
|
|
$\forall (a,b) \in \R$
|
|
|
|
$\sin(a + b) = \sin a \cos b + \sin b \cos a$
|
|
|
|
$\sin(a - b) = \sin a \cos b - \sin b \cos a$
|
|
|
|
$\sin a - \sin b = 2 \cos (\frac{a+b}{2}) \sin (\frac{a-b}{2})$
|
|
|
|
$\sin a\sin b = \frac{\cos(a - b) - \cos(a + b)}{2}$
|
|
|
|
\subsection{tan}
|
|
%TODO Complete subsection
|
|
|
|
$\tan 0 = 0$
|
|
|
|
$\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$
|
|
|
|
$\tan \frac{\pi}{4} = 1$
|
|
|
|
$\tan(\frac{\pi}{2} - x) = \frac{1}{\tan x}$
|
|
|
|
$\tan(\frac{\pi}{2} + x) = -\frac{1}{\tan x}$
|
|
|
|
$\tan(a + b) = \frac{\tan(a) + \tan(b)}{1- \tan(a)\tan(b)}$
|
|
|
|
$\tan(a - b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}$
|
|
|
|
\subsection{Combinaisons}
|
|
%TODO Complete subsection
|
|
|
|
$\forall (a,b) \in \R$
|
|
|
|
$\sin a \cos b = \frac{\sin(a + b) + \sin(a - b)}{2}$
|
|
|
|
\langsection{Fonctions hyperboliques}{Hyperbolic functions}
|
|
|
|
\subsection{cosh}
|
|
|
|
$cosh\ x = \frac{e^x + e^{-x}}{2} = \frac{e^{2x} + 1}{2e^x} = \frac{1 + e^{-2x}}{2e^{-x}}$
|
|
|
|
\subsection{sinh}
|
|
|
|
$sinh\ x = \frac{e^x - e^{-x}}{2} = \frac{e^{2x} - 1}{2e^x} = \frac{1 - e^{-2x}}{2e^{-x}}$
|
|
|
|
\subsection{tanh}
|
|
|
|
$tanh\ x = \frac{sinh\ x}{cosh\ x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$
|