Files
notebook/contents/topology_exo.tex
2025-04-29 13:25:05 +02:00

108 lines
5.7 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\langsubsubsection{Exercices}{Exercises}
\begin{exercise_sq}[TD3 EX1]
Soit $E$ un $\R$-espace vectoriel de dimension finie muni de deux normes $N_1, N_2$.
\begin{enumerate}[(a)]
\item{Montrer que les boules-unité $B_1, B_2$ pour $N_1, N_2$ sont homéomorphes. En déduire que si l'une est compacte, alors de même l'autre. Elles sont donc toutes compactes étant donné que la boule euclidienne l'est.}
\item{Montrer que la norme $\function{N_2}{E}{\R}_+$ restreinte à la boules-unité $B_1$ est majoré par un réel $\lambda$. En déduire que pour tout $x \in E$ on a $\lambda N_1(x) \le N_2(x)$.}
\item{En déduire que les normes $N_1$ et $N_2$ sont équivalentes. En particulier, la "bornitude" d'une partie de $E$ ne dépend pas du choix de la norme.}
\end{enumerate}
\end{exercise_sq}
\begin{proof}
\lipsum[2]
% TODO Complete proof
\end{proof}
\begin{exercise_sq}[TD3 EX2]
Parmi les parties suivantes de R2, lesquelles sont compactes ?
\begin{enumerate}[(a)]
\item{$H_a = \{ (x, y) \in \R^2 \suchthat xy = 1, \abs{x + y} \le a \}$ pour $2 \le a \le +\infty$}
\item{$S_b = \{ (x, y) \in \R^2 \suchthat b \abs{x} \le y \le 1 x^2 \}$ pour $b \in \R_+$}
\item{$P = \{ (0, 0) \} \union \Union\limits_{n \in \N^*} \{ \frac{1}{n} \} \cartesianProduct [0, \frac{1}{n}]$}
\item{$S = \{ (0, 0) \} \union \{ (x, x \sin(\frac{1}{x})) \suchthat 0 < x \le 1 \}$}
\item{$D = \{ (x, y) \in \R^2 \suchthat x^2 + y^2 \le 1 \}, D_\Q = D \intersection \Q^2, D_\Z = D \intersection \Z^2$}
\item{Donner trois raisons du fait que $]0, 1] \subset \R$ n'est pas compact.}
\end{enumerate}
\end{exercise_sq}
\begin{proof}
\lipsum[2]
% TODO Complete proof
\end{proof}
\begin{exercise_sq}[TD3 EX3]
Soit $A$ un compact de $(R^n,d)$ et $\function{\phi}{A}{A}$ une application contractante.
\begin{enumerate}[(a)]
\item{Montrer que $A \cartesianProduct A$ est un fermé de $R^{2n}$.}
\item{Montrer que $A \cartesianProduct A$ est un compact de $R^{2n}$.}
\item{On suppose que $A$ n'est pas singleton. Montrer que $\function{\phi}{A}{A}$ ne peut pas être surjective.
On pourra considérer les antécédents de deux points $(x_0, y_0) \in A^2$ tels que $d(x_0, y_0) = diam(A) = sup_{(x, y) \in A} d(x, y)$}
\item{On note $A= A_0$ et $A_{n + 1} = \phi(A_n)$. Que peut-on dire sur $\lim_{n \to \infty} diam(A_n)$ et sur $\Intersection_{n \ge 0} A_n$ ?}
\end{enumerate}
\end{exercise_sq}
\begin{proof}
\lipsum[2]
% TODO Complete proof
\end{proof}
\begin{exercise_sq}[TD3 EX4]
On se place dans $\R^n$ muni de la distance euclidienne.
\begin{enumerate}[(a)]
\item{Montrer que la somme $K + L = \{ x + y \in \R^n \suchthat x \in K, y \in L \}$ de deux parties compactes $K$, $L$ est compacte.}
\item{Montrer que l'intersection de deux parties compactes est compacte. Montrer que la réunion finie de parties compactes est compacte.}
\item{Montrer que pour deux compacts $K$, $L$ disjoints la distance $d(K, L) = inf_{(x, y) \in K \cartesianProduct L} d(x, y)$ est strictement positive.
En déduire lexistence de deux ouverts $U$, $V$ disjoints tels que $K \subset U$ et $L \subset V$.}
\item{Montrer que l'intersection $K = \Intersection_{n \ge 0} K_n$ d'une famille décroissante de parties compactes non vides est compacte non vide.
Montrer que si $K \subset U$ pour un ouvert $U$ alors il existe $n \in \N$ tel que $K_n \subset U$.}
\end{enumerate}
\end{exercise_sq}
\begin{proof}
\lipsum[2]
% TODO Complete proof
\end{proof}
\begin{exercise_sq}[TD3 EX5]
Montrer que toute suite de points bornée de $\R^n$ possède une sous-suite qui converge (théorème de Bolzano-Weierstrass).
En déduire que toute suite \suite{x} nadmettant pas de sous-suite convergente, diverge dans le sens suivant : $\lim_{n \to \infty} \norm{x_n} = \infty$.
\end{exercise_sq}
\begin{proof}
\lipsum[2]
% TODO Complete proof
\end{proof}
\begin{exercise_sq}[TD3 EX6]
Soit un espace métrique $(E, d)$, nous allons montrer l'équivalence entre les propositions suivantes :
\begin{enumerate}
\item{De tout recouvrement ouvert de $E$ on peut extraire un recouvrement fini (la propriété de Borel-Lebesgue).}
\item{$E$ est compact (i.e. toute suite admet des valeurs dadhérence).}
\item{$E$ est pré-compact (3a) et complet (3b).}
\item{$E$ est pré-compact et pour tout recouvrement ouvert de $E$ il existe $\epsilon > 0$ tel que toute $\epsilon$-boule de $E$ est contenue dans un des ouverts du recouvrement.}
\end{enumerate}
\begin{enumerate}[(a)]
\item{Montrer que l'ensemble des valeurs dadhérence d'une suite \suite{x} s'identifie à $\Intersection\limits_{N \ge 0} \overline{X_N}$, où $X_N = \Union\limits_{n \ge N} \{ x_n \}$.}
\item{Montrer que la propriété de Borel-Lebesgue implique que pour toute suite décroissante de fermés dont lintersection est vide les termes de la suite
sont vides à partir dun certain rang. En déduire que lintersection de (a) est non-vide, donc (1) $\implies$ (2).
On a vu en cours que (2) $\implies$ (3b), On admettra ici que (2) $\implies$ (3a) complétant ainsi (2) $\implies$ (3). En cours, on a vu (3) $\implies$ (2).}
\item{Pour (3) $\implies$ (4) on raisonne par labsurde : on suppose qu'il existe un recouvrement $(U_i)_{i \in I}$ de $E$ mettant en défaut (4), autrement dit : pour $\epsilon_n = \frac{1}{2^n}$
il existe une boule $B(x_n, \epsilon_n)$ contenue dans aucun des ouverts du recouvrement.
La suite des centres $(x_n)$ admet alors (par (3) $\implies$ (2)) une sous-suite qui converge vers $x \in E$. Montrer qu'un ouvert du recouvrement de $E$ contenant $x$ contient forcément des boules $B(x_n, \epsilon_n)$ en contradiction avec l'hypothèse.}
\item{Montrer (4) $\implies$ (1).}
\end{enumerate}
\end{exercise_sq}
\begin{proof}
\lipsum[2]
% TODO Complete proof
\end{proof}