2023-12-16 08:47:35 +01:00

493 lines
12 KiB
C++

#pragma once
#include <memory>
#include <cstring>
#ifdef __DEBUG
#include <stdexcept>
#endif
namespace asp {
template<typename T>
struct Array {
std::shared_ptr<T[]> data;
size_t length = 0;
Array() noexcept = delete;
Array(const size_t& size) noexcept: data(std::shared_ptr<T[]>(new T[size])), length(size) {
// #ifdef __DEBUG
// printf("Creating array of size %lu\n", size);
// #endif
}
Array(const Array<T>& other) noexcept: data(std::shared_ptr<T[]>(new T[other.length])), length(other.length) {
#ifdef __DEBUG
printf("Copying array of size %lu\n", other.length);
#endif
memcpy(data.get(), other.data.get(), length * sizeof(T));
}
Array(Array&& other) noexcept {
// #ifdef __DEBUG
// printf("Moving array of size %lu\n", other.length);
// #endif
data = other.data;
length = other.length;
other.data = nullptr;
other.length = 0;
}
constexpr T& operator[](const size_t& index) const {
#ifdef __DEBUG
if (index > length) {
fprintf(stderr, "Index %ld out of range in Array of length %ld !\n", index, length);
throw std::out_of_range("Index out of range !");
}
#endif
return data.get()[index];
}
};
template<typename T>
int32_t print(const Array<T>& a, const char* format) noexcept {
int32_t num_written = 0;
num_written += printf("[");
char formatter[BUFSIZ] = { 0 };
sprintf(formatter, "%s,", format);
for (size_t i = 0; i < a.length; ++i)
num_written += printf(formatter, a[i]);
sprintf(formatter, "%s]\n", format);
num_written += printf(formatter, a[a.length - 1]);
return num_written;
}
int32_t print(const Array<uint16_t>& a) noexcept {
return print(a, "%b");
}
int32_t print(const Array<int32_t>& a) noexcept {
return print(a, "%i");
}
int32_t print(const Array<uint64_t>& a) noexcept {
return print(a, "%lu");
}
int32_t print(const Array<int16_t>& a) noexcept {
//printf("%i\n", a[0]);
return print(a, "%i");
}
int32_t print(const std::string& s) noexcept {
return printf("%s\n", s.c_str());
}
int32_t print(const char* s) noexcept {
return printf("%s\n", s);
}
template<typename T>
constexpr T& max(const Array<T>& a) noexcept {
T& max_el = a[0];
for (size_t i = 1; i < a.length; ++i)
if (a[i] > max_el)
max_el = a[i];
return max_el;
}
template<typename T>
constexpr T& min(const Array<T>& a) noexcept {
T& max_el = a[0];
for (size_t i = 1; i < a.length; ++i)
if (a[i] < max_el)
max_el = a[i];
return max_el;
}
template<typename T, typename F>
Array<T>& map(Array<T>& a, const F& fnc) noexcept {
for (size_t i = 0; i < a.length; ++i)
a[i] = fnc(i, a[i]);
return a;
}
template<typename T, typename F>
void foreach(const Array<T>& a, const F& fnc) noexcept {
for (size_t i = 0; i < a.length; ++i)
fnc(i, a[i]);
}
Array<size_t> range(const size_t& n) noexcept {
Array<size_t> a(n);
return std::move(map(a, [](const size_t& i, const size_t&) -> const size_t& {
return i;
}));
}
template<typename T>
constexpr inline static void swap(T* a, T* b) noexcept {
const T temp = *a;
*a = *b;
*b = temp;
}
template<typename T>
void bubble_sort(const Array<T>& a) noexcept {
size_t j;
for (size_t i = 0; i < a.length; ++i)
for (j = i + 1; j < a.length; ++j)
if (a[i] > a[j])
swap(&a[i], &a[j]);
}
template<typename T>
Array<size_t> bubble_sort_arg(const Array<T>& a) noexcept {
Array<size_t> indices = range(a.length);
size_t j;
for (size_t i = 0; i < a.length; ++i)
for (j = i + 1; j < a.length; ++j)
if (a[i] > a[j]){
swap(&indices[i], &indices[j]);
swap(&a[i], &a[j]);
}
return indices;
}
template<typename T>
static size_t qs_partition(const Array<T>& a, const size_t& l, const size_t& h) noexcept {
size_t i = l - 1;
for (size_t j = l; j <= h; ++j)
if (a[j] < a[h])
swap(&a[++i], &a[j]);
swap(&a[++i], &a[h]);
return i;
}
template<typename T>
static void quicksort(const Array<T>& a, const size_t& l, const size_t& h) noexcept {
if (l >= h)
return;
const size_t p = qs_partition(a, l, h);
if (p - 1 <= h)
quicksort(a, l, p - 1);
quicksort(a, p + 1, h);
}
template<typename T>
void quicksort(const Array<T>& a) noexcept {
quicksort(a, 0, a.length - 1);
}
template<typename T>
static void quicksort_iter(const Array<T>& a, const size_t& l, const size_t& h) noexcept {
// Create an auxiliary stack
const size_t total = h - l + 1;
// push initial values of l and h to stack
size_t* stack = new size_t[total]{l, h};
// initialize top of stack
size_t top = 1;
size_t low = l, high = h;
// Keep popping from stack while is not empty
while (top <= total) {
// Pop h and l
high = stack[top--];
low = stack[top--];
if(low >= high)
break;
// Set pivot element at its correct position
// in sorted array
const size_t p = qs_partition(a, low, high);
// If there are elements on left side of pivot,
// then push left side to stack
if (p - 1 > low && p - 1 < total) {
stack[++top] = low;
stack[++top] = p - 1;
}
// If there are elements on right side of pivot,
// then push right side to stack
if (p + 1 < high) {
stack[++top] = p + 1;
stack[++top] = high;
}
}
delete[] stack;
}
template<typename T>
void quicksort_iter(const Array<T>& a) noexcept {
quicksort_iter(a, 0, a.length - 1);
}
template<typename T>
static size_t qs_arg_partition(const Array<T>& a, const Array<size_t>& indices, const size_t& l, const size_t& h) noexcept {
size_t i = l - 1;
for (size_t j = l; j <= h; ++j)
if (a[j] < a[h]){
swap(&a[++i], &a[j]);
swap(&indices[i], &indices[j]);
}
swap(&indices[++i], &indices[h]);
swap(&a[i], &a[h]);
return i;
}
template<typename T>
static void quicksort_arg(const Array<T>& a, const Array<size_t>& indices, const size_t& l, const size_t& h) noexcept {
if (l >= h)
return;
const size_t p = qs_arg_partition(a, indices, l, h);
if (p - 1 <= h)
quicksort_arg(a, indices, l, p - 1);
quicksort_arg(a, indices, p + 1, h);
}
template<typename T>
Array<size_t> quicksort_arg(const Array<T>& other, const size_t& l, const size_t& h) noexcept {
Array<size_t> indices = range(other.length);
quicksort_arg(other, indices, l, h);
return indices;
}
template<typename T>
Array<size_t> quicksort_arg(const Array<T>& a) noexcept {
return quicksort_arg(a, 0, a.length - 1);
}
template<typename T>
void quicksort_arg_iter(const Array<T>& a, const Array<size_t>& indices, const size_t& l, const size_t& h) noexcept {
// Create an auxiliary stack
const size_t total = h - l + 1;
// push initial values of l and h to stack
size_t* stack = new size_t[total]{l,h};
// initialize top of stack
size_t top = 1;
size_t low = l, high = h;
// Keep popping from stack while is not empty
while (top <= total) {
// Pop h and l
high = stack[top--];
low = stack[top--];
if(low >= high)
break;
// Set pivot element at its correct position
// in sorted array
const size_t p = qs_arg_partition(a, indices, low, high);
// If there are elements on left side of pivot,
// then push left side to stack
if (p - 1 > low && p - 1 < total) {
stack[++top] = low;
stack[++top] = p - 1;
}
// If there are elements on right side of pivot,
// then push right side to stack
if (p + 1 < high) {
stack[++top] = p + 1;
stack[++top] = high;
}
}
delete[] stack;
}
template<typename T>
Array<size_t> quicksort_arg_iter(const Array<T>& a) noexcept {
Array<size_t> indices = range(a.length);
quicksort_arg_iter(a, indices, 0, a.length - 1);
return indices;
}
template<typename T>
struct ArgVal {
size_t indice;
T val;
ArgVal() noexcept = default;
ArgVal(const size_t& _i, const T& _v) noexcept : indice(_i), val(_v) {}
constexpr bool operator>(const ArgVal<T>& other) const noexcept {
return std::move(val > other.val);
}
constexpr bool operator<(const ArgVal<T>& other) const noexcept {
return std::move(val < other.val);
}
constexpr bool operator>=(const ArgVal<T>& other) const noexcept {
return std::move(val >= other.val);
}
constexpr bool operator<=(const ArgVal<T>& other) const noexcept {
return std::move(val <= other.val);
}
};
template<typename T>
static void merge(const Array<T>& a, const size_t& l, const size_t& m, const size_t& r) noexcept {
Array<T> left_arr(m - l + 1);
memcpy(&left_arr.data[0], &a[l], left_arr.length * sizeof(T));
Array<T> right_arr(r - m);
memcpy(&right_arr.data[0], &a[m + 1], right_arr.length * sizeof(T));
size_t i_a0 = 0, i_a1 = 0, i = l;
// Merge the temp arrays back size_to array[left..right]
for (; i_a0 < left_arr.length && i_a1 < right_arr.length; ++i)
a[i] = left_arr[i_a0] <= right_arr[i_a1] ? left_arr[i_a0++] : right_arr[i_a1++];
//
// Copy the remaining elements of left[], if there are any
const size_t leftover = left_arr.length - i_a0;
memcpy(&a[i], &left_arr[i_a0], leftover * sizeof(T));
// Copy the remaining elements of right[], if there are any
memcpy(&a[i + leftover], &right_arr[i_a1], (right_arr.length - i_a1) * sizeof(T));
}
template<typename T>
void mergesort(const Array<T>& a, const size_t& l, const size_t& r) noexcept {
if (l >= r)
return;
const size_t m = l + (r - l) / 2;
mergesort(a, l, m);
mergesort(a, m + 1, r);
merge(a, l, m, r);
}
template<typename T>
void mergesort(const Array<T>& a) noexcept {
mergesort(a, 0, a.length - 1);
}
template<typename T>
Array<size_t> mergesort_arg(const Array<T>& a, const size_t& l, const size_t& r) noexcept {
Array<ArgVal<T>> temp_vals(a.length);
map(temp_vals, [&a](const size_t& i, const ArgVal<T>&) -> const ArgVal<T> {
return ArgVal<T>(i, a[i]);
});
mergesort(temp_vals, l, r);
Array<size_t> indices(a.length);
return std::move(map(indices, [&temp_vals](const size_t& i, const size_t&) -> size_t {
return temp_vals[i].indice;
}));
}
template<typename T>
Array<size_t> mergesort_arg(const Array<T>& a) noexcept {
return mergesort_arg(a, 0, a.length - 1);
}
//static void count_sort(const Array<int32_t>& a, const int32_t& exp, const int32_t& d) noexcept {
// Array<int32_t> output(a.length), count(d);
// memset(&count[0], 0, d * sizeof(int32_t));
// foreach(a, [count, exp, d](const int32_t&, const int32_t& val) -> void {
// count[(val / exp) % d]++;
// });
// for (int32_t i = 1; i <= d; ++i)
// count[i] += count[i - 1];
// for (int32_t i = a.length - 1; i >= 0; --i) {
// output[count[(a[i] / exp) % d] - 1] = a[i];
// count[(a[i] / exp) % d]--;
// }
// memcpy(&a[0], &output[0], a.length * sizeof(int32_t));
//}
template<typename T>
void counting_sort(const Array<T>& a) noexcept {
Array<T> output(a);
map(a, [output](const size_t& i, const T&) -> const T& {
return output[i];
});
}
template<typename T>
Array<size_t> counting_sort_arg(const Array<T>& a) noexcept {
Array<size_t> indices = range(a.length);
return indices;
}
template<typename T>
inline void radix_sort_256(T* a, const size_t& n) noexcept {
//template<typename T>
//void radix_sort(const Array<int32_t>& a) noexcept {
if (n <= 1)
//if (a.length <= 1)
return;
T* output = new T[n]; // output array
size_t* count = new size_t[256];
T* originalArr = a; // So we know which was input
for (size_t shift = 0, s = 0; shift < 4; shift++, s += 8) {
// Zero the counts
for (size_t i = 0; i < 256; i++)
count[i] = 0;
// Store count of occurrences in count[]
for (size_t i = 0; i < n; i++)
count[(a[i] >> s) & 0xff]++;
// Change count[i] so that count[i] now contains
// actual position of this digit in output[]
for (size_t i = 1; i < 256; i++)
count[i] += count[i - 1];
// Build the output array
for (int32_t i = n - 1; i >= 0; i--) {
// precalculate the offset as it's a few instructions
const size_t idx = (a[i] >> s) & 0xff;
// Subtract from the count and store the value
output[--count[idx]] = a[i];
}
// Copy the output array to input[], so that input[]
// is sorted according to current digit
// We can just swap the pointers
swap(a, output);
}
// If we switched posize_ters an odd number of times,
// make sure we copy before returning
if (originalArr == output) {
swap(a, output);
for (size_t i = 0; i < n; i++)
a[i] = output[i];
}
delete[] output, delete[] count;
}
template<typename T>
void radix_sort(const Array<T>& a) noexcept {
radix_sort_256(a.data.get(), a.length);
}
template<typename T>
Array<size_t> radix_sort_arg(const Array<T>& a) noexcept {
Array<T> indices = range(a.length);
return indices;
}
};