python : Updated code with better display, documentation and format_time
This commit is contained in:
@ -18,10 +18,10 @@ def set_integral_image(X: np.ndarray) -> np.ndarray:
|
||||
"""Transform the input images in integrated images (CPU version).
|
||||
|
||||
Args:
|
||||
X (np.ndarray): Dataset of images.
|
||||
X (np.ndarray): Dataset of images
|
||||
|
||||
Returns:
|
||||
np.ndarray: Dataset of integrated images.
|
||||
np.ndarray: Dataset of integrated images
|
||||
"""
|
||||
X_ii = np.empty_like(X, dtype = np.uint32)
|
||||
for i, Xi in enumerate(tqdm_iter(X, "Applying integral image")):
|
||||
@ -34,59 +34,18 @@ def set_integral_image(X: np.ndarray) -> np.ndarray:
|
||||
X_ii[i] = ii
|
||||
return X_ii
|
||||
|
||||
@njit('uint32(uint32[:, :], int16, int16, int16, int16)')
|
||||
def __compute_feature__(ii: np.ndarray, x: int, y: int, w: int, h: int) -> int:
|
||||
"""Compute a feature on an integrated image at a specific coordinate (CPU version).
|
||||
|
||||
Args:
|
||||
ii (np.ndarray): Integrated image.
|
||||
x (int): X coordinate.
|
||||
y (int): Y coordinate.
|
||||
w (int): width of the feature.
|
||||
h (int): height of the feature.
|
||||
|
||||
Returns:
|
||||
int: Computed feature.
|
||||
"""
|
||||
return ii[y + h, x + w] + ii[y, x] - ii[y + h, x] - ii[y, x + w]
|
||||
|
||||
@njit('int32[:, :](uint8[:, :, :, :], uint32[:, :, :])')
|
||||
def apply_features(feats: np.ndarray, X_ii: np.ndarray) -> np.ndarray:
|
||||
"""Apply the features on a integrated image dataset (CPU version).
|
||||
|
||||
Args:
|
||||
feats (np.ndarray): Features to apply.
|
||||
X_ii (np.ndarray): Integrated image dataset.
|
||||
|
||||
Returns:
|
||||
np.ndarray: Applied features.
|
||||
"""
|
||||
X_feat = np.empty((feats.shape[0], X_ii.shape[0]), dtype = np.int32)
|
||||
|
||||
for i, (p, n) in enumerate(tqdm_iter(feats, "Applying features")):
|
||||
for j, x_i in enumerate(X_ii):
|
||||
p_x, p_y, p_w, p_h = p[0]
|
||||
p1_x, p1_y, p1_w, p1_h = p[1]
|
||||
n_x, n_y, n_w, n_h = n[0]
|
||||
n1_x, n1_y, n1_w, n1_h = n[1]
|
||||
p1 = __compute_feature__(x_i, p_x, p_y, p_w, p_h) + __compute_feature__(x_i, p1_x, p1_y, p1_w, p1_h)
|
||||
n1 = __compute_feature__(x_i, n_x, n_y, n_w, n_h) + __compute_feature__(x_i, n1_x, n1_y, n1_w, n1_h)
|
||||
X_feat[i, j] = int32(p1) - int32(n1)
|
||||
|
||||
return X_feat
|
||||
|
||||
@njit('int32[:, :](int32[:, :], uint16[:, :], uint8[:], float64[:])')
|
||||
def train_weak_clf(X_feat: np.ndarray, X_feat_argsort: np.ndarray, y: np.ndarray, weights: np.ndarray) -> np.ndarray:
|
||||
"""Train the weak classifiers on a given dataset (CPU version).
|
||||
|
||||
Args:
|
||||
X_feat (np.ndarray): Feature images dataset.
|
||||
X_feat_argsort (np.ndarray): Sorted indexes of the integrated features.
|
||||
y (np.ndarray): Labels of the features.
|
||||
weights (np.ndarray): Weights of the features.
|
||||
X_feat (np.ndarray): Feature images dataset
|
||||
X_feat_argsort (np.ndarray): Sorted indexes of the integrated features
|
||||
y (np.ndarray): Labels of the features
|
||||
weights (np.ndarray): Weights of the features
|
||||
|
||||
Returns:
|
||||
np.ndarray: Trained weak classifiers.
|
||||
np.ndarray: Trained weak classifiers
|
||||
"""
|
||||
total_pos, total_neg = weights[y == 1].sum(), weights[y == 0].sum()
|
||||
|
||||
@ -112,29 +71,85 @@ def train_weak_clf(X_feat: np.ndarray, X_feat_argsort: np.ndarray, y: np.ndarray
|
||||
classifiers[i] = (best_threshold, best_polarity)
|
||||
return classifiers
|
||||
|
||||
@njit('uint32(uint32[:, :], int16, int16, int16, int16)')
|
||||
def __compute_feature__(ii: np.ndarray, x: int, y: int, w: int, h: int) -> int:
|
||||
"""Compute a feature on an integrated image at a specific coordinate (CPU version).
|
||||
|
||||
Args:
|
||||
ii (np.ndarray): Integrated image
|
||||
x (int): X coordinate
|
||||
y (int): Y coordinate
|
||||
w (int): width of the feature
|
||||
h (int): height of the feature
|
||||
|
||||
Returns:
|
||||
int: Computed feature
|
||||
"""
|
||||
return ii[y + h, x + w] + ii[y, x] - ii[y + h, x] - ii[y, x + w]
|
||||
|
||||
@njit('int32[:, :](uint8[:, :, :, :], uint32[:, :, :])')
|
||||
def apply_features(feats: np.ndarray, X_ii: np.ndarray) -> np.ndarray:
|
||||
"""Apply the features on a integrated image dataset (CPU version).
|
||||
|
||||
Args:
|
||||
feats (np.ndarray): Features to apply
|
||||
X_ii (np.ndarray): Integrated image dataset
|
||||
|
||||
Returns:
|
||||
np.ndarray: Applied features
|
||||
"""
|
||||
X_feat = np.empty((feats.shape[0], X_ii.shape[0]), dtype = np.int32)
|
||||
|
||||
for i, (p, n) in enumerate(tqdm_iter(feats, "Applying features")):
|
||||
for j, x_i in enumerate(X_ii):
|
||||
p_x, p_y, p_w, p_h = p[0]
|
||||
p1_x, p1_y, p1_w, p1_h = p[1]
|
||||
n_x, n_y, n_w, n_h = n[0]
|
||||
n1_x, n1_y, n1_w, n1_h = n[1]
|
||||
p1 = __compute_feature__(x_i, p_x, p_y, p_w, p_h) + __compute_feature__(x_i, p1_x, p1_y, p1_w, p1_h)
|
||||
n1 = __compute_feature__(x_i, n_x, n_y, n_w, n_h) + __compute_feature__(x_i, n1_x, n1_y, n1_w, n1_h)
|
||||
X_feat[i, j] = int32(p1) - int32(n1)
|
||||
|
||||
return X_feat
|
||||
|
||||
@njit('int32(int32[:], uint16[:], int32, int32)')
|
||||
def as_partition(a: np.ndarray, indices: np.ndarray, l: int, h: int) -> int:
|
||||
i = l - 1
|
||||
j = l
|
||||
for j in range(l, h + 1):
|
||||
if a[indices[j]] < a[indices[h]]:
|
||||
def _as_partition_(d_a: np.ndarray, d_indices: np.ndarray, low: int, high: int) -> int:
|
||||
"""Partition of the argsort algorithm.
|
||||
|
||||
Args:
|
||||
d_a (np.ndarray): Array on device to sort
|
||||
d_indices (np.ndarray): Array of indices on device to write to
|
||||
low (int): lower bound to sort
|
||||
high (int): higher bound to sort
|
||||
|
||||
Returns:
|
||||
int: Last index sorted
|
||||
"""
|
||||
i, j = low - 1, low
|
||||
for j in range(low, high + 1):
|
||||
if d_a[d_indices[j]] < d_a[d_indices[high]]:
|
||||
i += 1
|
||||
indices[i], indices[j] = indices[j], indices[i]
|
||||
d_indices[i], d_indices[j] = d_indices[j], d_indices[i]
|
||||
|
||||
i += 1
|
||||
indices[i], indices[j] = indices[j], indices[i]
|
||||
d_indices[i], d_indices[j] = d_indices[j], d_indices[i]
|
||||
return i
|
||||
|
||||
@njit('void(int32[:], uint16[:], int32, int32)')
|
||||
def argsort_bounded(a: np.ndarray, indices: np.ndarray, l: int, h: int):
|
||||
total = h - l + 1;
|
||||
stack = np.empty((total,), dtype = np.int32)
|
||||
stack[0] = l
|
||||
stack[1] = h
|
||||
top = 1;
|
||||
def argsort_bounded(d_a: np.ndarray, d_indices: np.ndarray, low: int, high: int) -> None:
|
||||
"""Perform an indirect sort of a given array within a given bound.
|
||||
|
||||
low = l
|
||||
high = h
|
||||
Args:
|
||||
d_a (np.ndarray): Array to sort
|
||||
d_indices (np.ndarray): Array of indices to write to
|
||||
low (int): lower bound to sort
|
||||
high (int): higher bound to sort
|
||||
"""
|
||||
total = high - low + 1
|
||||
stack = np.empty((total,), dtype = np.int32)
|
||||
stack[0] = low
|
||||
stack[1] = high
|
||||
top = 1
|
||||
|
||||
while top >= 0:
|
||||
high = stack[top]
|
||||
@ -143,24 +158,32 @@ def argsort_bounded(a: np.ndarray, indices: np.ndarray, l: int, h: int):
|
||||
top -= 1
|
||||
|
||||
if low >= high:
|
||||
break;
|
||||
break
|
||||
|
||||
p = as_partition(a, indices, low, high);
|
||||
p = _as_partition_(d_a, d_indices, low, high)
|
||||
|
||||
if p - 1 > low:
|
||||
top += 1
|
||||
stack[top] = low;
|
||||
stack[top] = low
|
||||
top += 1
|
||||
stack[top] = p - 1;
|
||||
stack[top] = p - 1
|
||||
|
||||
if p + 1 < high:
|
||||
top += 1
|
||||
stack[top] = p + 1;
|
||||
stack[top] = p + 1
|
||||
top += 1
|
||||
stack[top] = high;
|
||||
stack[top] = high
|
||||
|
||||
@njit('uint16[:, :](int32[:, :])')
|
||||
def argsort(X_feat: np.ndarray) -> np.ndarray:
|
||||
"""Perform an indirect sort of a given array.
|
||||
|
||||
Args:
|
||||
X_feat (np.ndarray): Array to sort
|
||||
|
||||
Returns:
|
||||
np.ndarray: Array of indices that sort the array
|
||||
"""
|
||||
indices = np.empty_like(X_feat, dtype = np.uint16)
|
||||
indices[:, :] = np.arange(indices.shape[1])
|
||||
for i in tqdm_iter(range(X_feat.shape[0]), "argsort"):
|
||||
|
Reference in New Issue
Block a user