contents/topology.tex : Added disjoints compacts make disjoints open
This commit is contained in:
parent
3d57aa2e65
commit
19958a8ebd
@ -273,6 +273,21 @@ Source : \citeannexes{scholarpedia_topological_transitivity}
|
|||||||
Un espace topologique $E$ est \textbf{compact} si $E$ est séparé \ref{definition:separated_space} et si tout recouvrement de $E$ par des ouverts contient un recouvrement fini de $E$ i.e. si $E = \Union\limits_{i \in I} U_i$ avec les $U_i$ ouverts, alors il existe une partie finie $V := \{i_1, i_2, \cdots, i_n\}$ de $I$ tel que $E = \Union\limits_{v \in V} v$
|
Un espace topologique $E$ est \textbf{compact} si $E$ est séparé \ref{definition:separated_space} et si tout recouvrement de $E$ par des ouverts contient un recouvrement fini de $E$ i.e. si $E = \Union\limits_{i \in I} U_i$ avec les $U_i$ ouverts, alors il existe une partie finie $V := \{i_1, i_2, \cdots, i_n\}$ de $I$ tel que $E = \Union\limits_{v \in V} v$
|
||||||
\end{definition_sq}
|
\end{definition_sq}
|
||||||
|
|
||||||
|
\begin{theorem_sq}
|
||||||
|
Soit $K,L$ de $\R^N$ deux compacts disjoints, la distance $d(K, L) = \inf_{(x, y) \in K \cartesianProduct L}d(x, y)$ est strictement positive. Également, il existe deux ouverts $U$ et $V$ disjoints tels que $K \subset U$ et $L \subset V$.
|
||||||
|
\end{theorem_sq}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
Soit $K$ et $L$ deux compacts disjoints ainsi que la distance défini tel que $d(K, L) := \inf_{(x, y) \in K \cartesianProduct L}d(x, y)$.
|
||||||
|
|
||||||
|
Considérons la fonction $\function{f}{K \cartesianProduct L}{\R_+} \functiondef{(x, y)}{d(x, y)}$. Par la continuité de la métrique, $f$ est continue, ainsi que $d(K, L) = \inf_{K \cartesianProduct L} f > 0$, car si $x \in K$ et $y \in L$, $d(x, y) = 0 \implies x = y$ hors $x \in K \intersection L = \emptyset$ (parce que disjoints). De plus, comme $f$ est une fonction continue dans un ensemble compact, il atteint sa borne inférieure dans son domaine i.e. $f > 0 \implies \inf f > 0 \implies d(K, L) > 0$. Notons cette distance $R$.
|
||||||
|
|
||||||
|
Comme $R > 0$, nous pouvons construire pour chaque élément de $K$ et $L$ une boule ouverte de centre $x \in K$ et de rayon $\frac{R}{2}$ (et respectivement pour $L$). Cela permet de définir $U := \Union\limits_{x \in K} \B(x, \frac{R}{2})$ et $V := \Union\limits_{y \in L} \B(y, \frac{R}{2})$. Par construction, $K \subset U$ et $L \subset V$.
|
||||||
|
|
||||||
|
Finalement, $U$ et $V$ sont des réunions d'ouverts donc $U$ et $V$ sont des ouverts. De plus $U \intersection V$ est habité $\equivalence d(K, L) < \frac{R}{2} + \frac{R}{2} = R$. Cette proposition étant toujours fausse $U \intersection V = \emptyset$ ce qui montre que $U$ et $V$ sont disjoints.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
|
||||||
\langsection{Connexité}{Connectness}
|
\langsection{Connexité}{Connectness}
|
||||||
|
|
||||||
\begin{definition_sq}
|
\begin{definition_sq}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user