Added algebra_dm{1,2}, combinatorics, fourier, suites and topology_dm1
This commit is contained in:
		
							
								
								
									
										20
									
								
								contents/combinatorics.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										20
									
								
								contents/combinatorics.tex
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,20 @@
 | 
			
		||||
\langchapter{Combinatoire}{Combinatorics}
 | 
			
		||||
%TODO Complete chapter
 | 
			
		||||
 | 
			
		||||
\langsection{Formules}{Formulas}
 | 
			
		||||
 | 
			
		||||
$\prod\limits_{k=1}^{n} k = 1 \times 2 \times 3 \times \cdots \times n = n!$
 | 
			
		||||
 | 
			
		||||
$\prod\limits_{k=1}^{n} 2k = 2 \times 4 \times 6 \times \cdots \times 2n = 2^n n!$
 | 
			
		||||
 | 
			
		||||
$\prod\limits_{k=1}^{n} (2k - 1) = 1 \times 3 \times 5 \times \cdots \times (2n + 1) = \frac{(2n + 1)!}{2^n n!}$
 | 
			
		||||
 | 
			
		||||
$\sum\limits_{k=0}^n \binom{n}{k} = 2^n$
 | 
			
		||||
 | 
			
		||||
$\binom{n}{k}=\left\{\begin{aligned} &\frac{n!}{k!(n - k)!} & & \text{si } k \in \discreteInterval{0,n} \\ &0 & &\text{sinon} \end{aligned}\right.$
 | 
			
		||||
 | 
			
		||||
$\forall n \in \N,\forall k \in \Z, \binom{n}{n-k} = \binom{n}{k}$
 | 
			
		||||
 | 
			
		||||
Formule de Pascal
 | 
			
		||||
 | 
			
		||||
$\forall n \in \N, \forall k \in \Z, \binom{n}{k - 1} + \binom{n}{k} = \binom{n + 1}{k}$
 | 
			
		||||
		Reference in New Issue
	
	Block a user