Added union s.e.v proof and irrationality of sqrt
This commit is contained in:
@ -333,3 +333,40 @@ $\rightarrow\leftarrow$
|
||||
$\implies |P| = \infty$
|
||||
|
||||
Il existe une infinité de nombre premiers.
|
||||
|
||||
\langsubsection{Irrationnalité}{Irrationality}
|
||||
|
||||
\langsubsubsection{$\forall n \in \N, \sqrt{n}$ est soit un nombre premier ou un carré parfait}{$\sqrt{n}$ is either a prime number or a perfect square}
|
||||
|
||||
\begin{theorem_sq} \label{theorem:sqrt_prime}
|
||||
$\Pn$ is the set of all prime numbers \ref{definition:prime_number}.
|
||||
$\forall p \in \Pn, \sqrt{p} \notin \Q$
|
||||
\end{theorem_sq}
|
||||
|
||||
The classical proof of the irrationality of 2 is a specific case of \ref{theorem:sqrt_prime}.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
By contradiction let's assume $\sqrt{p} \in \Q$
|
||||
|
||||
$a \in \Z, b \in \N^*, \text{PGCD}(a,b) = 1, \sqrt{p} = \frac{a}{b}$
|
||||
|
||||
$\Rightarrow p = (\frac{a}{b})^2 = \frac{a^2}{b^2}$
|
||||
|
||||
$\Rightarrow b^2p = a^2$
|
||||
|
||||
$\Rightarrow p|a$
|
||||
|
||||
Let $c \in \N^*$, $a = pc$
|
||||
|
||||
$\Rightarrow b^2 p = (pc)^2=p^2c^2$
|
||||
|
||||
$\Rightarrow b^2 = pc^2$
|
||||
|
||||
$\Rightarrow p|b$
|
||||
|
||||
$\Rightarrow (p|b \land p|a \land \text{PGCD}(a,b)=1) \Rightarrow \bot$
|
||||
|
||||
$\Rightarrow \sqrt{p} \notin \Q$
|
||||
|
||||
\end{proof}
|
||||
|
Reference in New Issue
Block a user