packages/macros.sty : Added suchthat operator && typos fixes
This commit is contained in:
@ -55,7 +55,7 @@ De manière intuitive, on pourrait croire que prendre une sous-partie infini de
|
||||
|
||||
La sous-partie des nombres paires est définie par les nombres de $\N$ qui sont dites paires, autrement dit qui sont de la forme
|
||||
|
||||
$\N_{2} = \{2n \mid n \in \N\}$
|
||||
$\N_{2} = \{2n \suchthat n \in \N\}$
|
||||
|
||||
Ou
|
||||
|
||||
@ -129,7 +129,7 @@ $\functiondef{n}{\begin{cases}n \le 0 & -2n \\ \otherwise & 2n-1 \end{cases}}$
|
||||
\langsection{Construction des rationnels $(\Q)$}{Construction of rational numbers}
|
||||
%TODO Complete section
|
||||
|
||||
$\forall p \in \Z, \forall q \in \N^*, \frac{p}{q} \land PGCD(p,q) = 1$
|
||||
$\forall p \in \Z, \forall q \in \N^*, \frac{p}{q} \land \gcd(p, q) = 1$
|
||||
|
||||
$\Q := (p,q) = \Z \cartesianProduct \N^*$
|
||||
|
||||
@ -399,10 +399,10 @@ Il existe une infinité de nombres premiers.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\lang{Par preuve par contradiction, supposons que le set de nombre premiers set fini.}%
|
||||
\lang{Par preuve par contradiction, supposons que le set de nombre premier est fini.}%
|
||||
{By proof by contraction, let suppose that the set of prime numbers is finite.}
|
||||
|
||||
Let $\Pn := \{p \mid p \in \N^* \land p \text{\lang{ est premier}{ is prime}}\}$ and $\omega := (\prod\limits_{p\in \Pn} p) + 1$
|
||||
Let $\Pn := \{p \suchthat p \in \N^* \land p \text{\lang{ est premier}{ is prime}}\}$ and $\omega := (\prod\limits_{p\in \Pn} p) + 1$
|
||||
|
||||
$\implies \forall p \in \Pn$, $\lnot(p \divides \omega)$
|
||||
|
||||
@ -412,7 +412,7 @@ $\implies \card{P} = \infty$
|
||||
|
||||
\end{proof}
|
||||
|
||||
\langsubsection{Irrationnalité}{Irrationality}
|
||||
\langsubsection{Irrationalité}{Irrationality}
|
||||
|
||||
\langsubsubsection{$\forall n \in \N, \sqrt{n}$ est soit un nombre premier ou un carré parfait}{$\sqrt{n}$ is either a prime number or a perfect square}
|
||||
|
||||
@ -427,7 +427,7 @@ The classical proof of the irrationality of 2 is a specific case of \ref{theorem
|
||||
|
||||
By contradiction let's assume $\sqrt{p} \in \Q$
|
||||
|
||||
$a \in \Z, b \in \N^*, \text{PGCD}(a,b) = 1, \sqrt{p} = \frac{a}{b}$
|
||||
$a \in \Z, b \in \N^*, \gcd(a,b) = 1, \sqrt{p} = \frac{a}{b}$
|
||||
|
||||
$\implies p = (\frac{a}{b})^2 = \frac{a^2}{b^2}$
|
||||
|
||||
@ -443,7 +443,7 @@ $\implies b^2 = pc^2$
|
||||
|
||||
$\implies p \divides b$
|
||||
|
||||
$\implies (p \divides b \land p \divides a \land \text{PGCD}(a,b)=1) \implies \bot$
|
||||
$\implies (p \divides b \land p \divides a \land \gcd(a,b)=1) \implies \bot$
|
||||
|
||||
$\implies \sqrt{p} \notin \Q$
|
||||
|
||||
|
Reference in New Issue
Block a user