packages/macros.sty : Added suchthat operator && typos fixes
This commit is contained in:
@ -46,7 +46,7 @@ $(a, b)_K := \{\{a\}, \{a, b\}\}$
|
||||
Unite all elements of two given sets into one.
|
||||
|
||||
\begin{definition_sq} \label{definition:set_union}
|
||||
$A \union B := \{x \mid (x \in A \lor x \in B)\}$
|
||||
$A \union B := \{x \suchthat (x \in A \lor x \in B)\}$
|
||||
\end{definition_sq}
|
||||
|
||||
Pour des ensembles finis : $\forall (E, F) \in \Cat(\Set)^2, \card{E \union F} = \card{E} + \card{F} - \card{E \intersection F}$
|
||||
@ -89,9 +89,9 @@ The axiom of choice implies the law of excluding middle.
|
||||
|
||||
Assume that $0 \ne 1$ (or any two elements that are not equal), Let $\Omega := \{0, 1\}$, $p \in \mathbf{Prop}$
|
||||
|
||||
$A := \{ x \in \Omega \mid x = 0 \lor p \}$
|
||||
$A := \{ x \in \Omega \suchthat x = 0 \lor p \}$
|
||||
|
||||
$B := \{ y \in \Omega \mid y = 1 \lor p \}$
|
||||
$B := \{ y \in \Omega \suchthat y = 1 \lor p \}$
|
||||
|
||||
$\implies 0 \in A \land 1 \in B$
|
||||
|
||||
@ -115,10 +115,10 @@ So by proof by cases $(p \lor \lnot p)$ which is the law of excluded middle \ref
|
||||
Unite all common elements of two given sets into one.
|
||||
|
||||
\begin{definition_sq} \label{definition:set_intersection}
|
||||
$A \intersection B := \{x \mid (x \in A \land x \in B)\}$
|
||||
$A \intersection B := \{x \suchthat (x \in A \land x \in B)\}$
|
||||
\end{definition_sq}
|
||||
|
||||
Pour des ensembles finis : $\forall E,F \in \Cat(\Set), \card{E \intersection F} = \card{E} - \card{F} + \card{E \union F}$
|
||||
Pour des ensembles finis : $\forall (E, F) \in \Set^2, \card{E \intersection F} = \card{E} - \card{F} + \card{E \union F}$
|
||||
|
||||
Example :
|
||||
|
||||
@ -136,10 +136,10 @@ $A \intersection B = \{c_0, \cdots, c_n\}$
|
||||
Exclude elements of a set from a set
|
||||
|
||||
\begin{definition_sq} \label{definition:set_difference}
|
||||
$A \setminus B := \{x \mid (x \in A \land x \notin B)\}$
|
||||
$A \setminus B := \{x \suchthat (x \in A \land x \notin B)\}$
|
||||
\end{definition_sq}
|
||||
|
||||
Pour des ensembles finis : $\forall E,F \in \Cat(\Set), \card{E \setminus F} = \card{E} - \card{E \intersection F}$
|
||||
Pour des ensembles finis : $\forall (E, F) \in \Set^2, \card{E \setminus F} = \card{E} - \card{E \intersection F}$
|
||||
|
||||
\langsection{Fonction}{Function}
|
||||
|
||||
|
Reference in New Issue
Block a user