contents/logic.tex : Updated symbols and subsubsection
This commit is contained in:
parent
dfea3bdb26
commit
a1591dc233
@ -1,22 +1,26 @@
|
||||
\langchapter{Logique}{Logic}
|
||||
%TODO Complete chapter
|
||||
|
||||
La logique consiste en des opérations effectuées uniquement sur des variables (notées $P,Q,R$) n'ayant pour valeur soit Vrai (noté \true), soit Faux (noté \false).
|
||||
%Logic consists of operations done on sole values : True $T$ and False $F$.
|
||||
\lang{La logique classique consiste en des opérations effectuées uniquement sur des propositions (typiquement notées $p$ ou $q$) n'ayant pour valeur soit Vrai (noté \true), soit Faux (noté \false).}%
|
||||
{Classical logic consists of operations done on sole values : True $T$ and False $F$.}
|
||||
|
||||
\langsection{Principle de tiers exclu}{Excluding middle}
|
||||
\langsection{Principle de tiers exclu}{Excluding middle} \label{definition:law_excluding_middle}
|
||||
|
||||
$\true \equivalence \lnot \false$
|
||||
|
||||
$\false \equivalence \lnot \true$
|
||||
|
||||
$\lnot\lnot p \implies p$
|
||||
|
||||
$p \lor \lnot p$
|
||||
|
||||
\langsection{Relation Binaires}{Binary relations}
|
||||
%TODO Complete section
|
||||
|
||||
\langsubsection{Réflexion}{Reflexivity} \label{definition:reflexivity}
|
||||
% TODO Complete subsection
|
||||
|
||||
Une relation $\Rel$ sur $E$ est dite \textbf{réflexive} si et seulement si $\forall a \in E, a \Rel a$.
|
||||
Une relation $\Rel$ sur $E$ est dite \textbf{réflexive} si et seulement si $\forall a \in E$, $a \Rel a$.
|
||||
|
||||
\langsubsection{Transitivité}{Transitivity} \label{definition:transitivity}
|
||||
% TODO Complete subsection
|
||||
@ -31,21 +35,21 @@ Une relation $\Rel$ sur $E$ est dite \textbf{associative} si et seulement si $\f
|
||||
\langsubsection{Commutativité}{Commutativity} \label{definition:commutativity}
|
||||
% TODO Complete subsection
|
||||
|
||||
Une relation $\Rel$ sur $E$ est dite \textbf{commutative} si et seulement si $\forall (a,b) \in E, a \Rel b = b \Rel a$.
|
||||
Une relation $\Rel$ sur $E$ est dite \textbf{commutative} si et seulement si $\forall (a,b) \in E$, $a \Rel b = b \Rel a$.
|
||||
|
||||
\langsection{Opérateurs}{Operators}
|
||||
%TODO Complete section
|
||||
|
||||
\langsubsection{NON}{NOT}
|
||||
\langsubsection{NON $(\lnot)$}{NOT $(\lnot)$}
|
||||
% TODO Complete subsection
|
||||
|
||||
$P \equivalence \lnot \lnot P$
|
||||
$p \equivalence \lnot \lnot p$
|
||||
|
||||
\langsubsubsection{Table de vérité}{Truth table}
|
||||
|
||||
\begin{tabular}{|c|c|}
|
||||
\hline
|
||||
P & $\lnot P$ \\
|
||||
$p$ & $\lnot p$ \\
|
||||
\hline
|
||||
\false & \true \\
|
||||
\hline
|
||||
@ -53,14 +57,16 @@ $P \equivalence \lnot \lnot P$
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\langsubsection{ET}{AND}
|
||||
\langsubsection{ET $(\land)$}{AND $(\land)$}
|
||||
%TODO Complete subsection
|
||||
|
||||
$P \land Q \equivalence \lnot P \lor \lnot Q$
|
||||
$p \land q \equivalence \lnot p \lor \lnot q$
|
||||
|
||||
\langsubsubsection{Table de vérité}{Truth table}
|
||||
|
||||
\begin{tabular}{|c|c||c|}
|
||||
\hline
|
||||
P & Q & P $\land$ Q \\
|
||||
$p$ & $q$ & $p \land q$ \\
|
||||
\hline
|
||||
\false & \false & \false \\
|
||||
\hline
|
||||
@ -72,16 +78,16 @@ $P \land Q \equivalence \lnot P \lor \lnot Q$
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\langsubsection{OU}{OR}
|
||||
\langsubsection{OU $(\lor)$}{OR $(\lor)$}
|
||||
% TODO Complete subsection
|
||||
|
||||
$P \lor Q \equivalence \lnot P \land \lnot Q$
|
||||
$p \lor q \equivalence \lnot p \land \lnot q$
|
||||
|
||||
\medskip
|
||||
\langsubsubsection{Table de vérité}{Truth table}
|
||||
|
||||
\begin{tabular}{|c|c||c|}
|
||||
\hline
|
||||
P & Q & P $\lor$ Q \\
|
||||
$p$ & $q$ & $p \lor q$ \\
|
||||
\hline
|
||||
\false & \false & \false \\
|
||||
\hline
|
||||
@ -93,12 +99,14 @@ $P \lor Q \equivalence \lnot P \land \lnot Q$
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\subsection{Implication}
|
||||
\subsection{Implication $(\implies)$}
|
||||
%TODO Complete subsection
|
||||
|
||||
\langsubsubsection{Table de vérité}{Truth table}
|
||||
|
||||
\begin{tabular}{|c|c||c|}
|
||||
\hline
|
||||
P & Q & P $\Rightarrow$ Q \\
|
||||
$p$ & $q$ & $p \implies q$ \\
|
||||
\hline
|
||||
\false & \false & \true \\
|
||||
\hline
|
||||
@ -110,15 +118,32 @@ $P \lor Q \equivalence \lnot P \land \lnot Q$
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\lang{Contraposée}{Contraposition } : \
|
||||
$\lnot Q \implies \lnot P$
|
||||
\lang{Contraposée}{Contraposition} : $\lnot q \implies \lnot p$
|
||||
|
||||
\langsubsection{Équivalence}{Equivalence}
|
||||
% TODO Complete subsection
|
||||
\langsubsubsection{Table de vérité}{Truth table}
|
||||
|
||||
\begin{tabular}{|c|c||c|}
|
||||
\hline
|
||||
$P$ & $Q$ & $P \equivalence Q$ \\
|
||||
$p$ & $q$ & $p \implies q$ \\
|
||||
\hline
|
||||
\false & \false & \true \\
|
||||
\hline
|
||||
\true & \false & \false \\
|
||||
\hline
|
||||
\false & \true & \true \\
|
||||
\hline
|
||||
\true & \true & \true \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\langsubsection{Équivalence $(\equivalence)$}{Equivalence $(\equivalence)$}
|
||||
% TODO Complete subsection
|
||||
|
||||
\langsubsubsection{Table de vérité}{Truth table}
|
||||
|
||||
\begin{tabular}{|c|c||c|}
|
||||
\hline
|
||||
$p$ & $q$ & $p \equivalence q$ \\
|
||||
\hline
|
||||
\false & \false & \true \\
|
||||
\hline
|
||||
@ -130,14 +155,16 @@ $\lnot Q \implies \lnot P$
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\langsubsection{OU exclusif / XOR}{Exclusive OR / XOR}
|
||||
\langsubsection{OU exclusif / XOR $(\oplus)$}{Exclusive OR / XOR $(\oplus)$}
|
||||
%TODO Complete subsection
|
||||
|
||||
$P \oplus Q \equivalence (P \lor Q) \land \lnot (P \land Q)$
|
||||
$p \oplus q \equivalence (p \lor q) \land \lnot (p \land q)$
|
||||
|
||||
\langsubsubsection{Table de vérité}{Truth table}
|
||||
|
||||
\begin{tabular}{|c|c||c|}
|
||||
\hline
|
||||
P & Q & $P \oplus Q$ \\
|
||||
$p$ & $q$ & $p \oplus q$ \\
|
||||
\hline
|
||||
\false & \false & \false \\
|
||||
\hline
|
||||
|
Loading…
x
Reference in New Issue
Block a user