contents/trigonometry.tex : added hyperbolic formulas
This commit is contained in:
parent
b9ca4eaa67
commit
c1a6223f54
@ -23,7 +23,7 @@ $\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$
|
|||||||
|
|
||||||
$\cos\frac{\pi}{3} = \frac{1}{2}$
|
$\cos\frac{\pi}{3} = \frac{1}{2}$
|
||||||
|
|
||||||
$\forall (a,b) \in \R^2$
|
$\forall (a,b) \in \R$
|
||||||
|
|
||||||
$\cos(a + b) = \cos a \cos b + \sin a \sin b$
|
$\cos(a + b) = \cos a \cos b + \sin a \sin b$
|
||||||
|
|
||||||
@ -46,7 +46,7 @@ $\sin \frac{\pi}{2} = 1$
|
|||||||
|
|
||||||
%$\sin(\frac{\pi}{2} + t) = -\cos(t)$
|
%$\sin(\frac{\pi}{2} + t) = -\cos(t)$
|
||||||
|
|
||||||
$\forall (a,b) \in \R^2$
|
$\forall (a,b) \in \R$
|
||||||
|
|
||||||
$\sin(a + b) = \sin a \cos b + \sin b \cos a$
|
$\sin(a + b) = \sin a \cos b + \sin b \cos a$
|
||||||
|
|
||||||
@ -76,8 +76,20 @@ $\tan(a - b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}$
|
|||||||
\subsection{Combinaisons}
|
\subsection{Combinaisons}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
|
|
||||||
$\forall (a,b) \in \R^2$
|
$\forall (a,b) \in \R$
|
||||||
|
|
||||||
$\sin a \cos b = \frac{\sin(a + b) + \sin(a - b)}{2}$
|
$\sin a \cos b = \frac{\sin(a + b) + \sin(a - b)}{2}$
|
||||||
|
|
||||||
|
\langsection{Fonctions hyperboliques}{Hyperbolic functions}
|
||||||
|
|
||||||
|
\subsection{cosh}
|
||||||
|
|
||||||
|
$cosh\ x = \frac{e^x + e^{-x}}{2} = \frac{e^{2x} + 1}{2e^x} = \frac{1 + e^{-2x}}{2e^{-x}}$
|
||||||
|
|
||||||
|
\subsection{sinh}
|
||||||
|
|
||||||
|
$sinh\ x = \frac{e^x - e^{-x}}{2} = \frac{e^{2x} - 1}{2e^x} = \frac{1 - e^{-2x}}{2e^{-x}}$
|
||||||
|
|
||||||
|
\subsection{tanh}
|
||||||
|
|
||||||
|
$tanh\ x = \frac{sinh\ x}{cosh\ x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$
|
||||||
|
Loading…
x
Reference in New Issue
Block a user