Added contents/topology_exo.tex
This commit is contained in:
107
contents/topology_exo.tex
Normal file
107
contents/topology_exo.tex
Normal file
@ -0,0 +1,107 @@
|
||||
\langsubsubsection{Exercices}{Exercises}
|
||||
|
||||
\begin{exercise_sq}[TD3 EX1]
|
||||
Soit $E$ un $\R$-espace vectoriel de dimension finie muni de deux normes $N_1, N_2$.
|
||||
|
||||
\begin{enumerate}[(a)]
|
||||
\item{Montrer que les boules-unité $B_1, B_2$ pour $N_1, N_2$ sont homéomorphes. En déduire que si l'une est compacte, alors de même l'autre. Elles sont donc toutes compactes étant donné que la boule euclidienne l'est.}
|
||||
\item{Montrer que la norme $\function{N_2}{E}{\R}_+$ restreinte à la boules-unité $B_1$ est majoré par un réel $\lambda$. En déduire que pour tout $x \in E$ on a $\lambda N_1(x) \le N_2(x)$.}
|
||||
\item{En déduire que les normes $N_1$ et $N_2$ sont équivalentes. En particulier, la "bornitude" d'une partie de $E$ ne dépend pas du choix de la norme.}
|
||||
\end{enumerate}
|
||||
\end{exercise_sq}
|
||||
|
||||
\begin{proof}
|
||||
\lipsum[2]
|
||||
% TODO Complete proof
|
||||
\end{proof}
|
||||
|
||||
\begin{exercise_sq}[TD3 EX2]
|
||||
Parmi les parties suivantes de R2, lesquelles sont compactes ?
|
||||
|
||||
\begin{enumerate}[(a)]
|
||||
\item{$H_a = \{ (x, y) \in \R^2 \suchthat xy = 1, \abs{x + y} \le a \}$ pour $2 \le a \le +\infty$}
|
||||
\item{$S_b = \{ (x, y) \in \R^2 \suchthat −b \abs{x} \le y \le 1 −x^2 \}$ pour $b \in \R_+$}
|
||||
\item{$P = \{ (0, 0) \} \union \Union\limits_{n \in \N^*} \{ \frac{1}{n} \} \cartesianProduct [0, \frac{1}{n}]$}
|
||||
\item{$S = \{ (0, 0) \} \union \{ (x, x \sin(\frac{1}{x})) \suchthat 0 < x \le 1 \}$}
|
||||
\item{$D = \{ (x, y) \in \R^2 \suchthat x^2 + y^2 \le 1 \}, D_\Q = D \intersection \Q^2, D_\Z = D \intersection \Z^2$}
|
||||
\item{Donner trois raisons du fait que $]0, 1] \subset \R$ n'est pas compact.}
|
||||
\end{enumerate}
|
||||
\end{exercise_sq}
|
||||
|
||||
\begin{proof}
|
||||
\lipsum[2]
|
||||
% TODO Complete proof
|
||||
\end{proof}
|
||||
|
||||
\begin{exercise_sq}[TD3 EX3]
|
||||
Soit $A$ un compact de $(R^n,d)$ et $\function{\phi}{A}{A}$ une application contractante.
|
||||
|
||||
\begin{enumerate}[(a)]
|
||||
\item{Montrer que $A \cartesianProduct A$ est un fermé de $R^{2n}$.}
|
||||
\item{Montrer que $A \cartesianProduct A$ est un compact de $R^{2n}$.}
|
||||
\item{On suppose que $A$ n'est pas singleton. Montrer que $\function{\phi}{A}{A}$ ne peut pas être surjective.
|
||||
On pourra considérer les antécédents de deux points $(x_0, y_0) \in A^2$ tels que $d(x_0, y_0) = diam(A) = sup_{(x, y) \in A} d(x, y)$}
|
||||
\item{On note $A= A_0$ et $A_{n + 1} = \phi(A_n)$. Que peut-on dire sur $\lim_{n \to \infty} diam(A_n)$ et sur $\Intersection_{n \ge 0} A_n$ ?}
|
||||
\end{enumerate}
|
||||
\end{exercise_sq}
|
||||
|
||||
\begin{proof}
|
||||
\lipsum[2]
|
||||
% TODO Complete proof
|
||||
\end{proof}
|
||||
|
||||
\begin{exercise_sq}[TD3 EX4]
|
||||
On se place dans $\R^n$ muni de la distance euclidienne.
|
||||
|
||||
\begin{enumerate}[(a)]
|
||||
\item{Montrer que la somme $K + L = \{ x + y \in \R^n \suchthat x \in K, y \in L \}$ de deux parties compactes $K$, $L$ est compacte.}
|
||||
\item{Montrer que l'intersection de deux parties compactes est compacte. Montrer que la réunion finie de parties compactes est compacte.}
|
||||
\item{Montrer que pour deux compacts $K$, $L$ disjoints la distance $d(K, L) = inf_{(x, y) \in K \cartesianProduct L} d(x, y)$ est strictement positive.
|
||||
En déduire l’existence de deux ouverts $U$, $V$ disjoints tels que $K \subset U$ et $L \subset V$.}
|
||||
\item{Montrer que l'intersection $K = \Intersection_{n \ge 0} K_n$ d'une famille décroissante de parties compactes non vides est compacte non vide.
|
||||
Montrer que si $K \subset U$ pour un ouvert $U$ alors il existe $n \in \N$ tel que $K_n \subset U$.}
|
||||
\end{enumerate}
|
||||
\end{exercise_sq}
|
||||
|
||||
\begin{proof}
|
||||
\lipsum[2]
|
||||
% TODO Complete proof
|
||||
\end{proof}
|
||||
|
||||
\begin{exercise_sq}[TD3 EX5]
|
||||
Montrer que toute suite de points bornée de $\R^n$ possède une sous-suite qui converge (théorème de Bolzano-Weierstrass).
|
||||
En déduire que toute suite \suite{x} n’admettant pas de sous-suite convergente, diverge dans le sens suivant : $\lim_{n \to \infty} \norm{x_n} = \infty$.
|
||||
\end{exercise_sq}
|
||||
|
||||
\begin{proof}
|
||||
\lipsum[2]
|
||||
% TODO Complete proof
|
||||
\end{proof}
|
||||
|
||||
\begin{exercise_sq}[TD3 EX6]
|
||||
Soit un espace métrique $(E, d)$, nous allons montrer l'équivalence entre les propositions suivantes :
|
||||
|
||||
\begin{enumerate}
|
||||
\item{De tout recouvrement ouvert de $E$ on peut extraire un recouvrement fini (la propriété de Borel-Lebesgue).}
|
||||
\item{$E$ est compact (i.e. toute suite admet des valeurs d’adhérence).}
|
||||
\item{$E$ est pré-compact (3a) et complet (3b).}
|
||||
\item{$E$ est pré-compact et pour tout recouvrement ouvert de $E$ il existe $\epsilon > 0$ tel que toute $\epsilon$-boule de $E$ est contenue dans un des ouverts du recouvrement.}
|
||||
\end{enumerate}
|
||||
|
||||
\begin{enumerate}[(a)]
|
||||
\item{Montrer que l'ensemble des valeurs d’adhérence d'une suite \suite{x} s'identifie à $\Intersection\limits_{N \ge 0} \overline{X_N}$, où $X_N = \Union\limits_{n \ge N} \{ x_n \}$.}
|
||||
\item{Montrer que la propriété de Borel-Lebesgue implique que pour toute suite décroissante de fermés dont l’intersection est vide les termes de la suite
|
||||
sont vides à partir d’un certain rang. En déduire que l’intersection de (a) est non-vide, donc (1) $\implies$ (2).
|
||||
On a vu en cours que (2) $\implies$ (3b), On admettra ici que (2) $\implies$ (3a) complétant ainsi (2) $\implies$ (3). En cours, on a vu (3) $\implies$ (2).}
|
||||
\item{Pour (3) $\implies$ (4) on raisonne par l’absurde : on suppose qu'il existe un recouvrement $(U_i)_{i \in I}$ de $E$ mettant en défaut (4), autrement dit : pour $\epsilon_n = \frac{1}{2^n}$
|
||||
il existe une boule $B(x_n, \epsilon_n)$ contenue dans aucun des ouverts du recouvrement.
|
||||
La suite des centres $(x_n)$ admet alors (par (3) $\implies$ (2)) une sous-suite qui converge vers $x \in E$. Montrer qu'un ouvert du recouvrement de $E$ contenant $x$ contient forcément des boules $B(x_n, \epsilon_n)$ en contradiction avec l'hypothèse.}
|
||||
\item{Montrer (4) $\implies$ (1).}
|
||||
\end{enumerate}
|
||||
\end{exercise_sq}
|
||||
|
||||
\begin{proof}
|
||||
\lipsum[2]
|
||||
% TODO Complete proof
|
||||
\end{proof}
|
||||
|
1
main.tex
1
main.tex
@ -85,6 +85,7 @@ Et de manière honteusement démagogique, je vous remercie tous lecteurs de ce c
|
||||
\input{contents/suites}
|
||||
\input{contents/fourier}
|
||||
\input{contents/topology}
|
||||
\input{contents/topology_exo}
|
||||
\input{contents/topology_dm1}
|
||||
\input{contents/dynamic_systems}
|
||||
\input{contents/category_theory}
|
||||
|
Reference in New Issue
Block a user