contents/algebra.tex : Fixed unital magma definition and added unital element is unique proof
This commit is contained in:
		@@ -13,9 +13,17 @@
 | 
			
		||||
\langsubsection{Magma unital}{Unital magma}
 | 
			
		||||
 | 
			
		||||
\begin{definition_sq} \label{definition:unital_magma}
 | 
			
		||||
	Un magma \ref{definition:magma} $(E, \star)$ est dit \textbf{unital} si $\exists 0_E \in E, \forall a \in E, 0_E \star a = a$.
 | 
			
		||||
	Un magma \ref{definition:magma} $(E, \star)$ est dit \textbf{unital} si $\exists 0_E \in E, \forall a \in E, 0_E \star a =  a \star 0_E = a$.
 | 
			
		||||
\end{definition_sq}
 | 
			
		||||
 | 
			
		||||
\begin{theorem_sq}
 | 
			
		||||
	L'élément neutre d'un magma unital $(E, \star)$ est unique.
 | 
			
		||||
\end{theorem_sq}
 | 
			
		||||
 | 
			
		||||
\begin{proof}
 | 
			
		||||
	Soit $e, f$ deux éléments neutres d'un magma unital $(E, \star)$, par définition d'un élément neutre, on peut poser $e = e \star f = f = f \star e = e$
 | 
			
		||||
\end{proof}
 | 
			
		||||
 | 
			
		||||
\subsection{Monoïde}
 | 
			
		||||
 | 
			
		||||
\begin{definition_sq} \label{definition:monoid}
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user