contents/algebra.tex : Fixed unital magma definition and added unital element is unique proof
This commit is contained in:
parent
7096394f76
commit
e78d54c45f
@ -13,9 +13,17 @@
|
|||||||
\langsubsection{Magma unital}{Unital magma}
|
\langsubsection{Magma unital}{Unital magma}
|
||||||
|
|
||||||
\begin{definition_sq} \label{definition:unital_magma}
|
\begin{definition_sq} \label{definition:unital_magma}
|
||||||
Un magma \ref{definition:magma} $(E, \star)$ est dit \textbf{unital} si $\exists 0_E \in E, \forall a \in E, 0_E \star a = a$.
|
Un magma \ref{definition:magma} $(E, \star)$ est dit \textbf{unital} si $\exists 0_E \in E, \forall a \in E, 0_E \star a = a \star 0_E = a$.
|
||||||
\end{definition_sq}
|
\end{definition_sq}
|
||||||
|
|
||||||
|
\begin{theorem_sq}
|
||||||
|
L'élément neutre d'un magma unital $(E, \star)$ est unique.
|
||||||
|
\end{theorem_sq}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
Soit $e, f$ deux éléments neutres d'un magma unital $(E, \star)$, par définition d'un élément neutre, on peut poser $e = e \star f = f = f \star e = e$
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
\subsection{Monoïde}
|
\subsection{Monoïde}
|
||||||
|
|
||||||
\begin{definition_sq} \label{definition:monoid}
|
\begin{definition_sq} \label{definition:monoid}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user