Fixed typos and some formatting
This commit is contained in:
@ -3,10 +3,10 @@
|
||||
|
||||
Source: \citeannexes{wikipedia_set_theory}
|
||||
|
||||
Un ensemble est une construction mathématiques qui réuni plusieurs objets en une même instance.
|
||||
Un ensemble est une construction mathématique qui réuni plusieurs objets en une même instance.
|
||||
%A set is a mathematical construct to assemble multiple objects in a single instance.
|
||||
|
||||
$S = \{a,b,c\}$
|
||||
$S = \{a, b, c\}$
|
||||
|
||||
\langsection{Axiomes}{Axioms}
|
||||
%TODO Complete section
|
||||
@ -20,25 +20,25 @@ $\forall A\forall B(\forall X(X \in A \equivalence X \in B) \implies A = B)$
|
||||
|
||||
\langsubsection{Ensemble vide}{Empty set}
|
||||
|
||||
Il existe un ensemble vide notée $\emptyset$.
|
||||
Il existe un ensemble vide noté $\emptyset$.
|
||||
|
||||
\langsubsection{Paire}{Pairing}
|
||||
%TODO Complete subsection
|
||||
|
||||
Source: \citeannexes{wikipedia_ordered_pair}
|
||||
Source : \citeannexes{wikipedia_ordered_pair}
|
||||
|
||||
\langsubsubsection{Définition de Wiener}{Wiener's definition}
|
||||
|
||||
$(a,b) := \{\{\{a\}, \emptyset\}, \{b\}\}$
|
||||
$(a, b) := \{\{\{a\}, \emptyset\}, \{b\}\}$
|
||||
|
||||
\langsubsubsection{Définition de Hausdorff}{Hausdorff's definition}
|
||||
|
||||
$(a,b) := \{\{a, 1\}, \{b,2\}\}$ where $a \ne 1 \land b \ne 2$
|
||||
$(a, b) := \{\{a, 1\}, \{b, 2\}\}$ where $a \ne 1 \land b \ne 2$
|
||||
|
||||
\langsubsubsection{Définition de Kuratowski}{Kuratowski's definition}
|
||||
|
||||
\begin{definition_sq} \label{definition:ordered_pair}
|
||||
$(a,b)_K := \{\{a\}, \{a,b\}\}$
|
||||
$(a, b)_K := \{\{a\}, \{a, b\}\}$
|
||||
\end{definition_sq}
|
||||
|
||||
\langsubsection{Réunion}{Union}
|
||||
@ -46,10 +46,10 @@ $(a,b)_K := \{\{a\}, \{a,b\}\}$
|
||||
Unite all elements of two given sets into one.
|
||||
|
||||
\begin{definition_sq} \label{definition:set_union}
|
||||
$A \union B := \{x | (x \in A \lor x \in B)\}$
|
||||
$A \union B := \{x \mid (x \in A \lor x \in B)\}$
|
||||
\end{definition_sq}
|
||||
|
||||
Pour des ensembles finis : $\forall E,F \in \Cat(\Set), \card{E \union F} = \card{E} + \card{F} - \card{E \intersection F}$
|
||||
Pour des ensembles finis : $\forall (E, F) \in \Cat(\Set)^2, \card{E \union F} = \card{E} + \card{F} - \card{E \intersection F}$
|
||||
|
||||
Example :
|
||||
|
||||
@ -61,7 +61,7 @@ $B := \{b_0, \cdots, b_m\}$
|
||||
|
||||
$A \union B = \{a_0, \cdots, a_n, b_0, \cdots, b_m\}$
|
||||
|
||||
\langsubsection{Scheme of replacement}{Scheme of replacement}
|
||||
\langsubsection{Schéma de compréhension}{Scheme of replacement}
|
||||
%TODO Complete subsection
|
||||
|
||||
\langsubsection{Infini}{Infinity}
|
||||
@ -89,9 +89,9 @@ The axiom of choice implies the law of excluding middle.
|
||||
|
||||
Assume that $0 \ne 1$ (or any two elements that are not equal), Let $\Omega := \{0, 1\}$, $p \in \mathbf{Prop}$
|
||||
|
||||
$A := \{ x \in \Omega | x = 0 \lor p \}$
|
||||
$A := \{ x \in \Omega \mid x = 0 \lor p \}$
|
||||
|
||||
$B := \{ y \in \Omega | y = 1 \lor p \}$
|
||||
$B := \{ y \in \Omega \mid y = 1 \lor p \}$
|
||||
|
||||
$\implies 0 \in A \land 1 \in B$
|
||||
|
||||
@ -115,7 +115,7 @@ So by proof by cases $(p \lor \lnot p)$ which is the law of excluded middle \ref
|
||||
Unite all common elements of two given sets into one.
|
||||
|
||||
\begin{definition_sq} \label{definition:set_intersection}
|
||||
$A \intersection B := \{x | (x \in A \land x \in B)\}$
|
||||
$A \intersection B := \{x \mid (x \in A \land x \in B)\}$
|
||||
\end{definition_sq}
|
||||
|
||||
Pour des ensembles finis : $\forall E,F \in \Cat(\Set), \card{E \intersection F} = \card{E} - \card{F} + \card{E \union F}$
|
||||
@ -136,14 +136,14 @@ $A \intersection B = \{c_0, \cdots, c_n\}$
|
||||
Exclude elements of a set from a set
|
||||
|
||||
\begin{definition_sq} \label{definition:set_difference}
|
||||
$A \setminus B := \{x | (x \in A \land x \notin B)\}$
|
||||
$A \setminus B := \{x \mid (x \in A \land x \notin B)\}$
|
||||
\end{definition_sq}
|
||||
|
||||
Pour des ensembles finis : $\forall E,F \in \Cat(\Set), \card{E \setminus F} = \card{E} - \card{E \intersection F}$
|
||||
|
||||
\langsection{Fonction}{Function}
|
||||
|
||||
Source: \citeannexes{wikipedia_function_mathematics}
|
||||
Source : \citeannexes{wikipedia_function_mathematics}
|
||||
|
||||
\begin{definition_sq} \label{definition:set_function}
|
||||
Une fonction $f$ est un tuple d'un domaine \citeannexes{wikipedia_domain_function} $A$ et un codomaine \citeannexes{wikipedia_codomain} $B$.
|
||||
@ -159,7 +159,7 @@ $\function{f}{x}{f(x)}$
|
||||
|
||||
\langsubsection{Injectivité}{Injectivity}
|
||||
|
||||
Source: \citeannexes{wikipedia_injective_function}
|
||||
Source : \citeannexes{wikipedia_injective_function}
|
||||
|
||||
\begin{definition_sq} \label{definition:injective}
|
||||
Une fonction $f$ de $E$ dans $F$ est dite \textbf{injective} si, et seulement si, $\forall (a,b) \in E, f(a) = f(b) \Rightarrow a = b$.
|
||||
@ -167,7 +167,7 @@ Une fonction $f$ de $E$ dans $F$ est dite \textbf{injective} si, et seulement si
|
||||
|
||||
\langsubsection{Surjectivité}{Surjectivity}
|
||||
|
||||
Source: \citeannexes{wikipedia_surjective_function}
|
||||
Source : \citeannexes{wikipedia_surjective_function}
|
||||
|
||||
\begin{definition_sq} \label{definition:surjective}
|
||||
Une fonction $f$ de $E$ dans $F$ est dite \textbf{surjective} si, et seulement si, $\forall y \in F, \exists x \in E : y = f(x)$.
|
||||
@ -175,7 +175,7 @@ Une fonction $f$ de $E$ dans $F$ est dite \textbf{surjective} si, et seulement s
|
||||
|
||||
\langsubsection{Bijectivité}{Bijectivity}
|
||||
|
||||
Source: \citeannexes{wikipedia_bijection}
|
||||
Source : \citeannexes{wikipedia_bijection}
|
||||
|
||||
\begin{definition_sq} \label{definition:bijection}
|
||||
Une fonction $f$ de $E$ dans $F$ est dite \textbf{bijective} si, et seulement si, elle est à la fois injective \ref{definition:injective} et surjective \ref{definition:surjective} ou $\forall y \in F, \exists! x \in E : y = f(x)$.
|
||||
|
Reference in New Issue
Block a user