Compare commits
2 Commits
70fa023190
...
c1a6223f54
Author | SHA1 | Date | |
---|---|---|---|
|
c1a6223f54 | ||
|
b9ca4eaa67 |
@ -12,7 +12,6 @@
|
|||||||
\SetAlgoLined
|
\SetAlgoLined
|
||||||
\SetNoFillComment
|
\SetNoFillComment
|
||||||
\tcc{This is a comment}
|
\tcc{This is a comment}
|
||||||
\vspace{3mm}
|
|
||||||
some code here\;
|
some code here\;
|
||||||
$x \leftarrow 0$\;
|
$x \leftarrow 0$\;
|
||||||
$y \leftarrow 0$\;
|
$y \leftarrow 0$\;
|
||||||
@ -35,16 +34,28 @@ $y \leftarrow 0$\;
|
|||||||
\caption{what}
|
\caption{what}
|
||||||
\end{algorithm}
|
\end{algorithm}
|
||||||
|
|
||||||
|
\langsection{Exemple en Haskell}{Haskell example}
|
||||||
|
\begin{lstlisting}[language=Haskell]
|
||||||
|
fibonacci :: Int -> Int
|
||||||
|
fibonacci 0 = 0
|
||||||
|
fibonacci 1 = 1
|
||||||
|
fibonacci n = fibonacci (n - 1) + fibonacci (n - 2)
|
||||||
|
\end{lstlisting}
|
||||||
|
|
||||||
\langsection{Exemple en Python}{Python example}
|
\langsection{Exemple en Python}{Python example}
|
||||||
\begin{lstlisting}[language=Python]
|
\begin{lstlisting}[language=Python]
|
||||||
def fnc(a, b):
|
def fibonacci(n: int) -> int:
|
||||||
return a + b
|
if n == 0 or n == 1:
|
||||||
|
return n
|
||||||
|
return fibonacci(n - 1) + fibonacci(n - 2)
|
||||||
\end{lstlisting}
|
\end{lstlisting}
|
||||||
|
|
||||||
\langsection{Exemple en C}{C example}
|
\langsection{Exemple en C}{C example}
|
||||||
\begin{lstlisting}[language=C]
|
\begin{lstlisting}[language=C]
|
||||||
int fnc(int a, int b){
|
int fibonacci(const int n){
|
||||||
return a + b;
|
if (n == 0 || n == 1)
|
||||||
|
return n;
|
||||||
|
return fibonacci(n - 1) + fibonacci(n - 2);
|
||||||
}
|
}
|
||||||
\end{lstlisting}
|
\end{lstlisting}
|
||||||
|
|
||||||
|
@ -23,7 +23,7 @@ $\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$
|
|||||||
|
|
||||||
$\cos\frac{\pi}{3} = \frac{1}{2}$
|
$\cos\frac{\pi}{3} = \frac{1}{2}$
|
||||||
|
|
||||||
$\forall (a,b) \in \R^2$
|
$\forall (a,b) \in \R$
|
||||||
|
|
||||||
$\cos(a + b) = \cos a \cos b + \sin a \sin b$
|
$\cos(a + b) = \cos a \cos b + \sin a \sin b$
|
||||||
|
|
||||||
@ -46,7 +46,7 @@ $\sin \frac{\pi}{2} = 1$
|
|||||||
|
|
||||||
%$\sin(\frac{\pi}{2} + t) = -\cos(t)$
|
%$\sin(\frac{\pi}{2} + t) = -\cos(t)$
|
||||||
|
|
||||||
$\forall (a,b) \in \R^2$
|
$\forall (a,b) \in \R$
|
||||||
|
|
||||||
$\sin(a + b) = \sin a \cos b + \sin b \cos a$
|
$\sin(a + b) = \sin a \cos b + \sin b \cos a$
|
||||||
|
|
||||||
@ -76,8 +76,20 @@ $\tan(a - b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}$
|
|||||||
\subsection{Combinaisons}
|
\subsection{Combinaisons}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
|
|
||||||
$\forall (a,b) \in \R^2$
|
$\forall (a,b) \in \R$
|
||||||
|
|
||||||
$\sin a \cos b = \frac{\sin(a + b) + \sin(a - b)}{2}$
|
$\sin a \cos b = \frac{\sin(a + b) + \sin(a - b)}{2}$
|
||||||
|
|
||||||
|
\langsection{Fonctions hyperboliques}{Hyperbolic functions}
|
||||||
|
|
||||||
|
\subsection{cosh}
|
||||||
|
|
||||||
|
$cosh\ x = \frac{e^x + e^{-x}}{2} = \frac{e^{2x} + 1}{2e^x} = \frac{1 + e^{-2x}}{2e^{-x}}$
|
||||||
|
|
||||||
|
\subsection{sinh}
|
||||||
|
|
||||||
|
$sinh\ x = \frac{e^x - e^{-x}}{2} = \frac{e^{2x} - 1}{2e^x} = \frac{1 - e^{-2x}}{2e^{-x}}$
|
||||||
|
|
||||||
|
\subsection{tanh}
|
||||||
|
|
||||||
|
$tanh\ x = \frac{sinh\ x}{cosh\ x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$
|
||||||
|
Loading…
x
Reference in New Issue
Block a user