Compare commits

...

2 Commits

Author SHA1 Message Date
saundersp
c1a6223f54 contents/trigonometry.tex : added hyperbolic formulas 2024-07-11 22:50:20 +02:00
saundersp
b9ca4eaa67 contents/computer_science.tex : added more code exemple 2024-07-11 22:46:09 +02:00
2 changed files with 31 additions and 8 deletions

View File

@ -12,7 +12,6 @@
\SetAlgoLined
\SetNoFillComment
\tcc{This is a comment}
\vspace{3mm}
some code here\;
$x \leftarrow 0$\;
$y \leftarrow 0$\;
@ -35,16 +34,28 @@ $y \leftarrow 0$\;
\caption{what}
\end{algorithm}
\langsection{Exemple en Haskell}{Haskell example}
\begin{lstlisting}[language=Haskell]
fibonacci :: Int -> Int
fibonacci 0 = 0
fibonacci 1 = 1
fibonacci n = fibonacci (n - 1) + fibonacci (n - 2)
\end{lstlisting}
\langsection{Exemple en Python}{Python example}
\begin{lstlisting}[language=Python]
def fnc(a, b):
return a + b
def fibonacci(n: int) -> int:
if n == 0 or n == 1:
return n
return fibonacci(n - 1) + fibonacci(n - 2)
\end{lstlisting}
\langsection{Exemple en C}{C example}
\begin{lstlisting}[language=C]
int fnc(int a, int b){
return a + b;
int fibonacci(const int n){
if (n == 0 || n == 1)
return n;
return fibonacci(n - 1) + fibonacci(n - 2);
}
\end{lstlisting}

View File

@ -23,7 +23,7 @@ $\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$
$\cos\frac{\pi}{3} = \frac{1}{2}$
$\forall (a,b) \in \R^2$
$\forall (a,b) \in \R$
$\cos(a + b) = \cos a \cos b + \sin a \sin b$
@ -46,7 +46,7 @@ $\sin \frac{\pi}{2} = 1$
%$\sin(\frac{\pi}{2} + t) = -\cos(t)$
$\forall (a,b) \in \R^2$
$\forall (a,b) \in \R$
$\sin(a + b) = \sin a \cos b + \sin b \cos a$
@ -76,8 +76,20 @@ $\tan(a - b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}$
\subsection{Combinaisons}
%TODO Complete subsection
$\forall (a,b) \in \R^2$
$\forall (a,b) \in \R$
$\sin a \cos b = \frac{\sin(a + b) + \sin(a - b)}{2}$
\langsection{Fonctions hyperboliques}{Hyperbolic functions}
\subsection{cosh}
$cosh\ x = \frac{e^x + e^{-x}}{2} = \frac{e^{2x} + 1}{2e^x} = \frac{1 + e^{-2x}}{2e^{-x}}$
\subsection{sinh}
$sinh\ x = \frac{e^x - e^{-x}}{2} = \frac{e^{2x} - 1}{2e^x} = \frac{1 - e^{-2x}}{2e^{-x}}$
\subsection{tanh}
$tanh\ x = \frac{sinh\ x}{cosh\ x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$