Compare commits
	
		
			12 Commits
		
	
	
		
			c1a6223f54
			...
			7bc99a71f4
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
|  | 7bc99a71f4 | ||
|  | 4df2923c6a | ||
|  | 4cbadb17a4 | ||
|  | 89bbc9adf9 | ||
|  | b16f6de66d | ||
|  | 1a17854c3c | ||
|  | 55ac1c6c20 | ||
|  | 6af3c70835 | ||
|  | e7f324dbe4 | ||
|  | 4688e13c93 | ||
|  | b6e7429363 | ||
|  | fb7b817d5f | 
							
								
								
									
										9
									
								
								Makefile
									
									
									
									
									
								
							
							
						
						
									
										9
									
								
								Makefile
									
									
									
									
									
								
							| @@ -1,9 +1,11 @@ | ||||
| OUT_DIR := out | ||||
| GRAPHS_DIR := graphs | ||||
| CONTENTS_DIR := contents | ||||
| PACKAGES_DIR := packages | ||||
| REFERENCES_DIR := references | ||||
|  | ||||
| CONTENTS := $(wildcard $(CONTENTS)/*.tex) | ||||
| CONTENTS := $(wildcard $(CONTENTS_DIR)/*.tex) | ||||
| PACKAGES := $(wildcard $(PACKAGES_DIR)/*.sty) | ||||
| REFERENCES := $(wildcard $(REFERENCES_DIR)/*.bib) | ||||
| GRAPHS := $(wildcard $(GRAPHS_DIR)/*.gv) | ||||
| GRAPHS_IMG := $(GRAPHS:$(GRAPHS_DIR)/%.gv=$(OUT_DIR)/%.gv.png) | ||||
| @@ -29,11 +31,12 @@ references: $(REFERENCES) | ||||
| 	bibtex $(OUT_DIR)/annexes | ||||
| 	bibtex $(OUT_DIR)/references | ||||
|  | ||||
| --inner_pdf: | ||||
| .PHONY: --inner_pdf | ||||
| --inner_pdf: $(CONTENTS) $(PACKAGES) $(REFERENCES) $(GRAPHS) | ||||
| 	pdflatex -output-directory $(OUT_DIR) main.tex | ||||
|  | ||||
| .PHONY: pdf | ||||
| pdf: $(GRAPHS_IMG) --inner_pdf references index --inner_pdf | ||||
| pdf: $(GRAPHS_IMG) --inner_pdf references index --inner_pdf references --inner_pdf | ||||
|  | ||||
| .PHONY: preview | ||||
| preview: pdf | ||||
|   | ||||
| @@ -4,22 +4,45 @@ | ||||
| \section{Structures} | ||||
| %TODO Complete section | ||||
|  | ||||
| \subsection{Monoïd} | ||||
| %TODO Complete subsection | ||||
| \subsection{Magma} \label{definition:magma} | ||||
|  | ||||
| \langsubsection{Corps}{Field} | ||||
| %TODO Complete subsection | ||||
| Soit une structure $S$ avec une loi de composition interne $(+)$ notée $(S,+)$ tel que $\forall(a,b) \in S, a + b \in S$. | ||||
|  | ||||
| \langsubsection{Anneau}{Ring} | ||||
| \langsubsection{Magma unital}{Unital magma} \label{definition:unital_magma} | ||||
|  | ||||
| Soit un magma \ref{definition:magma} $(S,+)$ untial en $0_e$ tel que $\exists 0_e \in S, \forall a \in S, 0_e + a = a$. | ||||
|  | ||||
| \subsection{Monoïd} \label{definition:monoid} | ||||
|  | ||||
| Soit un magma unital \ref{definition:unital_magma} $(S,+)$ dont la loi de composition est associative \ref{definition:associativity}. | ||||
|  | ||||
| \langsubsection{Groupe}{Group} \label{definition:group} | ||||
|  | ||||
| Soit un monoid \ref{definition:monoid} $(G,+)$ ayant un élément inverse tel que $\forall a \in G, \exists a^{-1} \in G, a + a^{-1} = 0_e$. | ||||
|  | ||||
| \langsubsubsection{Groupe abélien}{Abelian group} \label{definition:abelian_group} | ||||
|  | ||||
| Un groupe abélien est un groupe \ref{definition:group} dont la loi de composition est commutatif \ref{definition:commutativity}. | ||||
|  | ||||
| \langsubsection{Corps}{Field} \label{definition:field} | ||||
|  | ||||
| Soit une structure $F$ avec deux lois de composition interne $(+)$ et $(\times)$ notée $(F,+,\times)$. | ||||
|  | ||||
| \begin{itemize} | ||||
| 	\item{$(F,+)$ est un groupe \ref{definition:group} unital en $0_e$} | ||||
| 	\item{$(F\backslash\{0_e\},\times)$ est un groupe \ref{definition:group}} | ||||
| \end{itemize} | ||||
|  | ||||
| \langsubsection{Anneau}{Ring} \label{definition:ring} | ||||
| %TODO Complete subsection | ||||
|  | ||||
| \section{Matrices} | ||||
| %TODO Complete section | ||||
|  | ||||
| Un matrice est une structure qui permet de regrouper plusieurs éléments d'un corps $\K$ en un tableau de $n$ lignes et $m$ colonnes ou plus et est notée $\mathcal{M}_{n,m}(\K)$. Dans le cas d'une matrice carrée , on peux simplifier la notation en $\mathcal{M}_{n}(\K)$. | ||||
| Un matrice est une structure qui permet de regrouper plusieurs éléments d'un corps \ref{definition:field} $\K$ en un tableau de $n$ lignes et $m$ colonnes ou plus et est notée $\mathcal{M}_{n,m}(\K)$. Dans le cas d'une matrice carrée , on peux simplifier la notation en $\mathcal{M}_{n}(\K)$. | ||||
|  | ||||
| \begin{definition_sq} \label{definition:square_matrix} | ||||
| 	Une matrice carrée (notée $\mathcal{M}_n(\K)$) est une matrice $\mathcal{M}_{n,m}(\K)$ d'un corps $\K$ où $n = m$. | ||||
| 	Une matrice carrée (notée $\mathcal{M}_n(\K)$) est une matrice $\mathcal{M}_{n,m}(\K)$ d'un corps $\K$ où $n + m$. | ||||
| \end{definition_sq} | ||||
|  | ||||
| \begin{definition_sq} \label{definition:identity_matrix} | ||||
| @@ -29,7 +52,7 @@ Un matrice est une structure qui permet de regrouper plusieurs éléments d'un c | ||||
| \subsection{Trace} | ||||
| %TODO Complete subsection | ||||
|  | ||||
| $\forall A \in \mathcal{M}_{n}, tr(A)=\sum_{k=1}^na_{kk}$ | ||||
| $\forall A \in \mathcal{M}_{n}, tr(A)=\sum_{k=0}^na_{kk}$ | ||||
|  | ||||
| $tr\in\mathcal{L}(\mathcal{M}_n(\K),\K)$ | ||||
|  | ||||
| @@ -58,12 +81,9 @@ $\function{D}{\mathcal{M}_{m\times n}(\R)}{R}$ | ||||
| \langsubsubsection{Axiomes}{Axioms} | ||||
| %%TODO Complete subsubsection | ||||
|  | ||||
|  | ||||
| $\forall M \in \mathcal{M}_{m\times n}$ | ||||
| \begin{itemize} | ||||
| 	\item{$M' = \begin{pmatrix}1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \end{pmatrix}M$} | ||||
| 	\item{$\forall \lambda \in K, D(\lambda M) = \lambda D(M)$} | ||||
| 	\item{} | ||||
| 	\item{$\forall \lambda \in \K, D(\lambda M) = \lambda D(M)$} | ||||
| \end{itemize} | ||||
|  | ||||
| \langsubsubsection{Cas 2x2}{2x2 case} | ||||
| @@ -148,38 +168,70 @@ $A \in \mathcal{T}^+_{n,n}$ | ||||
|  | ||||
| $A = \begin{bmatrix}x_1, \cdots, x_n\end{bmatrix}$ | ||||
|  | ||||
| \langsection{Espaces vectoriels}{Vectors spaces} | ||||
| \langsection{Espaces vectoriels}{Vectors spaces} \label{definition:vector_space} | ||||
| %TODO Complete section | ||||
|  | ||||
| Soit $(E,+)$ un groupe abélien (i.e. commutatif) de $\mathbb{K}$ | ||||
| Soit $(E,+)$ un groupe abélien \ref{definition:abelian_group} de $\K$ | ||||
|  | ||||
| \begin{itemize} | ||||
| 	\item{muni d'une loi de composition interne notée $+$} | ||||
| 	\item{muni d'une loi de composition externe $\mathbb{K}*E \rightarrow E$ vérifiant $(\alpha,x) \rightarrow \alpha x$} | ||||
| 	\item{muni d'une loi de composition externe d'un corps $\K$ tel que $\K*E \rightarrow E$ vérifiant $(\alpha,x) \rightarrow \alpha x$} | ||||
| \end{itemize} | ||||
|  | ||||
| \bigskip | ||||
| Et vérifiant $\forall(\alpha,\beta) \in \mathbb{K}, \forall(a,b,c) \in E$ | ||||
| Et vérifiant $\forall(\alpha,\beta) \in \K, \forall(a,b,c) \in E$ | ||||
|  | ||||
| \begin{itemize} | ||||
| 	\item{Commutativité $a + b = b + a$} | ||||
| 	\item{Associativité $(a + b) + c = a + (b + c)$} | ||||
| 	\item{Élement neutre de $+ \Leftrightarrow \exists 0_E \in E : a + 0_E = a$} | ||||
| 	\item{Élement neutre de $* \Leftrightarrow \exists 1_K \in K : a \cdot 1_K = a$} | ||||
| 	\item{Élement opposé $\forall a \in E, \exists b \in E : a + b = b + a = 0_E$} | ||||
| 	\item{Stabilité par $+ \Leftrightarrow a + b \in E$} | ||||
| 	\item{Distributivité $+$ de $\mathbb{K} \Leftrightarrow (\alpha+\beta)a=\alpha a + \beta a$} | ||||
| 	\item{Distributivité $*$ de $\mathbb{K} \Leftrightarrow (\alpha*\beta)a=\alpha(\beta a)$} | ||||
| 	\item{Unital en $*$} | ||||
| 	\item{Distributivité (gauche et droite) $+$ de $\K \Leftrightarrow a(\alpha+\beta)+(\alpha+\beta)a+\alpha a + \beta a$} | ||||
| 	\item{Distributivité (gauche et droite) $*$ de $\K \Leftrightarrow a(\alpha*\beta)+(\alpha*\beta)a+\alpha(\beta a)$} | ||||
| \end{itemize} | ||||
|  | ||||
| \langsubsection{sous-espaces vectoriels}{Sub vector spaces} | ||||
| \langsubsection{Sous-espaces vectoriels}{Sub vector spaces} \label{definition:sub_vector_space} | ||||
| %TODO Complete subsection | ||||
|  | ||||
| Soit $E$ un $\mathbb{K}$-espace vectoriel et $F \subset E$ | ||||
| Soit $E$ un $\K$-espace vectoriel \ref{definition:vector_space}, $F$ est une sous-espace vectoriel (i.e. « s.e.v ») si $F \subset E$ ainsi que les propriétés suivantes : | ||||
|  | ||||
| \begin{itemize} | ||||
| 	\item{$F \ne \emptyset$} | ||||
| 	\item{$0_E \in F$} | ||||
| 	\item{$\forall(\alpha,\beta)\in\mathbb{K}, \forall(x,y)\in F, \alpha x+\beta y\in F$} | ||||
| 	\item{$\forall(\alpha, \beta) \in \K, \forall(x,y)\in F, \alpha x + \beta y \in F$} | ||||
| \end{itemize} | ||||
|  | ||||
| \begin{theorem_sq} \label{theorem:union_sub_vector_spaces} | ||||
| 	Soit $F$ et $G$ s.e.v \ref{definition:sub_vector_space} de $E$. « $F \union G$ est un s.e.v de $E$ » $ \equivalance (F \subset G) \lor (G \subset F)$. | ||||
| \end{theorem_sq} | ||||
|  | ||||
| \begin{proof} | ||||
|  | ||||
| Soit $F$ et $G$ s.e.v \ref{definition:sub_vector_space} de $E$. | ||||
|  | ||||
| \begin{centering} | ||||
| $\implies$ | ||||
| \end{centering} | ||||
|  | ||||
| $(F \subset G) \lor (G \subset F) \implies (G $ s.e.v de $E) \lor (F $ s.e.v de $E) \implies (F \union G)$ s.e.v de $E$. | ||||
|  | ||||
| \begin{centering} | ||||
| $\Leftarrow$ | ||||
| \end{centering} | ||||
|  | ||||
| $(F \union G) $ s.e.v de $E \land [(F \not\subset G) \land (G \not\subset F)]$ | ||||
|  | ||||
| Let $x \in F \setminus G$ and $y \in G \setminus F$ | ||||
|  | ||||
| $(F\union G)$ s.e.v de $E \implies x + y \in F \union G$ | ||||
|  | ||||
| B.W.O.C let's suppose $x + y \in F \setminus G$ | ||||
|  | ||||
| $\implies (x + y) - x \in F \setminus G$ | ||||
|  | ||||
| $\implies y \in F \setminus G \land y \in G \setminus F \implies \bot$ | ||||
|  | ||||
| By a similar argument $y \notin G \setminus F$ | ||||
|  | ||||
| $\implies (y \notin F \setminus G) \land (y \notin G \setminus F) \implies \bot$ | ||||
|  | ||||
| $\implies F \subset G \lor  G \subset F$ | ||||
|  | ||||
| \end{proof} | ||||
|  | ||||
|   | ||||
| @@ -1,9 +1,27 @@ | ||||
| \langchapter{Théorie des Catégories}{Category theory} | ||||
| %TODO Complete chapter | ||||
|  | ||||
| Category is a general theory of mathematical structures and their relations. | ||||
|  | ||||
| \langsection{Définition}{Definition} | ||||
|  | ||||
| A category $C$ is a collection of objects and morphisms | ||||
|  | ||||
| \langsection{Morphismes}{Morphisms} | ||||
| %TODO Complete section | ||||
|  | ||||
| \langsubsection{Isomorphisme}{Isomorphism} \label{definition:isomorphism} | ||||
| %TODO Complete section | ||||
|  | ||||
| \langsubsection{Endomorphisme}{Endomorphism} \label{definition:endomorphism} | ||||
| %TODO Complete section | ||||
|  | ||||
| \langsubsection{Homomorphisme}{Homomorphism} | ||||
| %TODO Complete section | ||||
|  | ||||
| \langsubsection{Homeomorphisme}{Homeomorphism} | ||||
| %TODO Complete section | ||||
|  | ||||
| \section{Functors} | ||||
| %TODO Complete section | ||||
|  | ||||
|   | ||||
							
								
								
									
										14
									
								
								contents/definitions.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										14
									
								
								contents/definitions.tex
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,14 @@ | ||||
| \langchapter{Définitions}{Definitions} | ||||
| %TODO Complete chapter | ||||
|  | ||||
| \langsection{Psychologie}{Psychology} | ||||
| %TODO Complete section | ||||
|  | ||||
| \langsubsubsection{Eleutheromanie}{Eleuteromania} | ||||
|  | ||||
| Eleutheromania, or eleutherophilia is "a mania or frantic zeal for freedom" \citereferences{carlyle_2005_french_revolution}. | ||||
| The term is sometimes used in a psychological context, sometimes likening it to a mental disorder, such as John G Robertson's definition, that describes it as a mad zeal or irresistible craving for freedom \citereferences{robertson_2003_excess}. | ||||
| However, it's also sometimes used to simply mean a passion for liberty \citereferences{tucker_1970_liberty}. | ||||
| Individuals with this condition are called eleutheromaniacs \citereferences{wheeler_1910_literature}. | ||||
| An antonym for the term is eleutherophobia. An individual that fears freedom is an eleutherophobe \citereferences{robertson_2003_excess}. | ||||
|  | ||||
| @@ -126,7 +126,7 @@ $\begin{Vmatrix} a & b \\ c & d \end{Vmatrix}$ | ||||
| \langsection{Informatique}{Computer science} | ||||
| %TODO Complete section | ||||
|  | ||||
| \subsection{LaTex} | ||||
| \subsection{LaTeX} | ||||
|  | ||||
| \begin{verbatim} | ||||
| 	\begin{verbatim} | ||||
|   | ||||
| @@ -4,25 +4,31 @@ | ||||
| La logique consiste en des opérations effectuées uniquement sur des variables (notées $P,Q,R$) n'ayant pour valeur soit Vrai (noté \true), soit Faux (noté \false). | ||||
| %Logic consists of operations done on sole values : True $T$ and False $F$. | ||||
|  | ||||
| \langsection{Principle de tiers exclu}{Excluding middle} | ||||
|  | ||||
| $\true \equivalance \lnot \false$ | ||||
|  | ||||
| $\false \equivalance \lnot \true$ | ||||
|  | ||||
| \langsection{Relation Binaires}{Binary relations} | ||||
| %TODO Complete section | ||||
|  | ||||
| \langsubsection{Réflexion}{Reflexivity} | ||||
| \langsubsection{Réflexion}{Reflexivity} \label{definition:reflexivity} | ||||
| % TODO Complete subsection | ||||
|  | ||||
| Une relation $\Rel$ sur $E$ est dite \textbf{réflexive} si et seulement si $\forall a \in E, a \Rel a$. | ||||
|  | ||||
| \langsubsection{Transitivité}{Transitivity} | ||||
| \langsubsection{Transitivité}{Transitivity} \label{definition:transitivity} | ||||
| % TODO Complete subsection | ||||
|  | ||||
| Une relation $\Rel$ sur $E$ est dite \textbf{transitive} si et seulement si $\forall (a,b) \in E, a \Rel b \land b \Rel c \equivalance a \Rel c$. | ||||
|  | ||||
| \langsubsection{Associativité}{Associativity} | ||||
| \langsubsection{Associativité}{Associativity} \label{definition:associativity} | ||||
| % TODO Complete subsection | ||||
|  | ||||
| Une relation $\Rel$ sur $E$ est dite \textbf{associative} si et seulement si $\forall (a,b) \in E, (a \Rel b) \Rel c \equivalance a \Rel (b \Rel c) \Leftrightarrow a \Rel b \Rel c$. | ||||
|  | ||||
| \langsubsection{Commutativité}{Commutativity} | ||||
| \langsubsection{Commutativité}{Commutativity} \label{definition:commutativity} | ||||
| % TODO Complete subsection | ||||
|  | ||||
| Une relation $\Rel$ sur $E$ est dite \textbf{commutative} si et seulement si $\forall (a,b) \in E, a \Rel b = b \Rel a$. | ||||
|   | ||||
| @@ -86,7 +86,7 @@ Chaque application généré de $g_c$ avec $c \in \N^*$ est injective avec $\N$, | ||||
|  | ||||
| \begin{itemize} \label{theorem:totally_ordered_natural_numbers} | ||||
| 	\item{L'ensemble est totalement ordonnée : $\forall n \in \N, \exists k \suchas k = n + 1 \land n < k$} | ||||
| 	\item{On peut diviser l'ensemble en deux ensembles distincts : $\forall n \in \N, \exists! k \in \N \suchas n := \begin{cases} 2k & \text{pair} \\ 2k+1 & \text{Impair} \end{cases}$} | ||||
| 	\item{On peut diviser l'ensemble en deux ensembles distincts : $\forall n \in \N, \exists! k \in \N \suchas n := \begin{cases} 2k & \text{paire} \\ 2k+1 & \text{Impaire} \end{cases}$} | ||||
| \end{itemize} | ||||
|  | ||||
| \begin{theorem_sq} | ||||
| @@ -139,9 +139,9 @@ $\forall (p,q) \in \Q, \forall n \in \N^*, \frac{p}{q} \Leftrightarrow \frac{p \ | ||||
| \langsubsection{Opérateurs}{Operators} | ||||
| %TODO Complete subsection | ||||
|  | ||||
| $\forall ((p,q), (a,b)) \in \Q^2, \frac{p}{q} + \frac{a}{b} = \frac{pb + aq}{qb}$ | ||||
| $\forall ((p,q), (a,b)) \in \Q, \frac{p}{q} + \frac{a}{b} = \frac{pb + aq}{qb}$ | ||||
|  | ||||
| $\forall ((p,q), (a,b)) \in \Q^2, \frac{p}{q} \cdot \frac{a}{b} = \frac{pa}{qb}$ | ||||
| $\forall ((p,q), (a,b)) \in \Q, \frac{p}{q} \cdot \frac{a}{b} = \frac{pa}{qb}$ | ||||
|  | ||||
| $\forall (p,q) \in \Q, \forall k \in \Z, (\frac{p}{q})^k = \frac{p^k}{q^k}$ | ||||
|  | ||||
| @@ -172,8 +172,7 @@ $\functiondef{(p,q)}{P_1^{\frac{p}{|p|} + 1}P_2^pP_3^q}$ | ||||
|  | ||||
| \langsubsection{Construction de Cayley–Dickson}{Cayley–Dickson's construction} | ||||
|  | ||||
| %\citeannexes{wikipedia_cayley_dickson} | ||||
| \citeannexes{project_vae} | ||||
| Source: \citeannexes{wikipedia_cayley_dickson} | ||||
|  | ||||
| \langsubsection{Coupes de Dedekind}{Dedekind's cuts} | ||||
| %TODO Complete subsection | ||||
| @@ -181,9 +180,9 @@ $\functiondef{(p,q)}{P_1^{\frac{p}{|p|} + 1}P_2^pP_3^q}$ | ||||
| \langsection{Construction des complexes $(\C)$}{Construction of complex numbers} | ||||
| %TODO Complete section | ||||
|  | ||||
| \citeannexes{wikipedia_complex_numbers} | ||||
| Source: \citeannexes{wikipedia_complex_number} | ||||
|  | ||||
| $\C = (a,b) \in R^2, a + ib ~= \R^2 $ | ||||
| $\C = (a,b) \in R, a + ib ~= \R $ | ||||
|  | ||||
| $i^2 = -1$ | ||||
|  | ||||
| @@ -204,7 +203,7 @@ $i^2 = -1$ | ||||
| \langsubsection{Relations binaries}{Binary relations} | ||||
| %TODO Complete subsection | ||||
|  | ||||
| $\forall ((a,b), (c,d)) \in \C^2, a = c \land b = d \Leftrightarrow a + ib = c + id$ | ||||
| $\forall ((a,b), (c,d)) \in \C, a = c \land b = d \Leftrightarrow a + ib = c + id$ | ||||
|  | ||||
| \langsubsection{Opérateurs}{Operators} | ||||
| %TODO Complete subsection | ||||
| @@ -213,7 +212,7 @@ Il est impossible d'avoir une relation d'ordre dans le corps des complexes mais | ||||
|  | ||||
| \subsubsection{Ordre lexicographique} | ||||
|  | ||||
| $\forall((a,b),(c,d)) \in \C^2, a + ib \Rel_L c + id := \begin{cases} | ||||
| $\forall((a,b),(c,d)) \in \C, a + ib \Rel_L c + id := \begin{cases} | ||||
| 	a < c & \implies a + ib < c + id \\ | ||||
| 	\otherwise & \begin{cases} | ||||
| 		b < d & \implies a + ib < c + id \\ | ||||
| @@ -223,7 +222,7 @@ $\forall((a,b),(c,d)) \in \C^2, a + ib \Rel_L c + id := \begin{cases} | ||||
|  | ||||
| \section{Construction des quaternions $(\Hq)$} | ||||
|  | ||||
| \citeannexes{wikipedia_quaternion} | ||||
| Source: \citeannexes{wikipedia_quaternion} | ||||
|  | ||||
| \langsubsection{Table de Cayley}{Multiplication table} | ||||
| %TODO Complete subsection | ||||
| @@ -245,7 +244,7 @@ $\forall((a,b),(c,d)) \in \C^2, a + ib \Rel_L c + id := \begin{cases} | ||||
|  | ||||
| \section{Construction des octonions $(\Ot)$} | ||||
|  | ||||
| \citeannexes{wikipedia_octonion} | ||||
| Source: \citeannexes{wikipedia_octonion} | ||||
|  | ||||
| \langsubsection{Table de multiplication}{Multiplication table} | ||||
| %TODO Complete subsection | ||||
| @@ -283,7 +282,7 @@ Où $\delta_{ij}$ est le symbole de Kronecker et $\epsilon_{ijk}$ est un tenseur | ||||
|  | ||||
| \section{Construction des sedenions $(\Se)$} | ||||
|  | ||||
| \citeannexes{wikipedia_sedenion} | ||||
| Source: \citeannexes{wikipedia_sedenion} | ||||
|  | ||||
| \langsubsection{Table de multiplication}{Multiplication table} | ||||
| %TODO Complete subsection | ||||
| @@ -334,3 +333,40 @@ $\rightarrow\leftarrow$ | ||||
| $\implies |P| = \infty$ | ||||
|  | ||||
| Il existe une infinité de nombre premiers. | ||||
|  | ||||
| \langsubsection{Irrationnalité}{Irrationality} | ||||
|  | ||||
| \langsubsubsection{$\forall n \in \N, \sqrt{n}$ est soit un nombre premier ou un carré parfait}{$\sqrt{n}$ is either a prime number or a perfect square} | ||||
|  | ||||
| \begin{theorem_sq} \label{theorem:sqrt_prime} | ||||
| $\Pn$ is the set of all prime numbers \ref{definition:prime_number}. | ||||
| $\forall p \in \Pn, \sqrt{p} \notin \Q$ | ||||
| \end{theorem_sq} | ||||
|  | ||||
| The classical proof of the irrationality of 2 is a specific case of \ref{theorem:sqrt_prime}. | ||||
|  | ||||
| \begin{proof} | ||||
|  | ||||
| By contradiction let's assume $\sqrt{p} \in \Q$ | ||||
|  | ||||
| $a \in \Z, b \in \N^*, \text{PGCD}(a,b) = 1, \sqrt{p} = \frac{a}{b}$ | ||||
|  | ||||
| $\Rightarrow p = (\frac{a}{b})^2 = \frac{a^2}{b^2}$ | ||||
|  | ||||
| $\Rightarrow b^2p = a^2$ | ||||
|  | ||||
| $\Rightarrow p|a$ | ||||
|  | ||||
| Let $c \in \N^*$, $a = pc$ | ||||
|  | ||||
| $\Rightarrow b^2 p = (pc)^2=p^2c^2$ | ||||
|  | ||||
| $\Rightarrow b^2 = pc^2$ | ||||
|  | ||||
| $\Rightarrow p|b$ | ||||
|  | ||||
| $\Rightarrow (p|b \land p|a \land \text{PGCD}(a,b)=1) \Rightarrow \bot$ | ||||
|  | ||||
| $\Rightarrow \sqrt{p} \notin \Q$ | ||||
|  | ||||
| \end{proof} | ||||
|   | ||||
| @@ -36,3 +36,14 @@ Stuffs | ||||
| The Nation that makes a great distinction between its scholars and its warriors will have its thinking done by cowards and its fighting done by fools. | ||||
| \end{quote} | ||||
| (Higher education and the military) | ||||
|  | ||||
| \subsection{Albert Camus} | ||||
| \begin{quote} | ||||
| ... ce, qu'on appelle une raison de vivre est en même temps une excellente raison de mourir. | ||||
| \end{quote} | ||||
| Le Mythe de Sysyphe: Chapitre 1 | ||||
|  | ||||
| \subsection{Père de Raz} | ||||
| \begin{quote} | ||||
| Corps qui ni pète, ni rote est voué à l'éclatement. | ||||
| \end{quote} | ||||
|   | ||||
| @@ -1,6 +1,8 @@ | ||||
| \langchapter{Théorie des ensembles}{Set theory} \label{set_theory} | ||||
| %TODO Complete chapter | ||||
|  | ||||
| Source: \citeannexes{wikipedia_set_theory} | ||||
|  | ||||
| Un ensemble est une construction mathématiques qui réuni plusieurs objets en une même instance. | ||||
| %A set is a mathematical construct to assemble multiple objects in a single instance. | ||||
|  | ||||
| @@ -16,6 +18,10 @@ $\forall A\forall B(\forall X(X \in A \Leftrightarrow X \in B) \Rightarrow A = B | ||||
| \langsubsection{Spécification}{Specification} | ||||
| %TODO Complete subsection | ||||
|  | ||||
| \langsubsection{Ensemble vide}{Empty set} | ||||
|  | ||||
| Il existe un ensemble vide notée $\emptyset$. | ||||
|  | ||||
| \langsubsection{Paire}{Pairing} | ||||
| %TODO Complete subsection | ||||
|  | ||||
| @@ -24,13 +30,13 @@ $\forall A\forall B(\forall X(X \in A \Leftrightarrow X \in B) \Rightarrow A = B | ||||
|  | ||||
| Unite all elements of two given sets into one. | ||||
|  | ||||
| $n,m \in \N^+$ | ||||
| $n,m \in \N$ | ||||
|  | ||||
| $A = \{a_1, \cdots, a_n\}$ | ||||
| $A = \{a_0, \cdots, a_n\}$ | ||||
|  | ||||
| $B = \{b_1, \cdots, b_m\}$ | ||||
| $B = \{b_0, \cdots, b_m\}$ | ||||
|  | ||||
| $A \cup B = \{a_1, \cdots, a_n, b_1, \cdots, b_m\}$ | ||||
| $A \union B = \{a_0, \cdots, a_n, b_0, \cdots, b_m\}$ | ||||
|  | ||||
| \langsubsection{Scheme of replacement}{Scheme of replacement} | ||||
| %TODO Complete subsection | ||||
| @@ -41,38 +47,56 @@ $A \cup B = \{a_1, \cdots, a_n, b_1, \cdots, b_m\}$ | ||||
| \subsection{Power set} | ||||
| %TODO Complete subsection | ||||
|  | ||||
| For a set $S$ such that $|S| = n \Leftrightarrow \mathbf{P}(S) = 2^n$ | ||||
|  | ||||
| \langsubsection{Choix}{Choice} | ||||
| %TODO Complete subsection | ||||
|  | ||||
| \section{Intersection} | ||||
| %TODO Complete subsection | ||||
|  | ||||
| Unite all common elements of two given sets into one. | ||||
|  | ||||
| $n,m,i \in \N$ | ||||
|  | ||||
| $A = \{a_0, \cdots, a_n, c_0, \cdots, c_n\}$ | ||||
|  | ||||
| $B = \{b_0, \cdots, b_m, c_0, \cdots, c_n\}$ | ||||
|  | ||||
| $A \cap B = \{c_0, \cdots, c_n\}$ | ||||
|  | ||||
| \langsection{Différence des sets}{Set difference} | ||||
| %TODO Complete section | ||||
|  | ||||
| \langsection{Fonction}{Function} | ||||
| %TODO Complete section | ||||
|  | ||||
| Une fonction $f$ est un opération qui permet de transformer un ou plusieurs éléments d'un set $A$ en d'autres éléments d'un set $B$. | ||||
| Source: \citeannexes{wikipedia_function_mathematics} | ||||
|  | ||||
| Une fonction $f$ est un tuple d'un domaine \citeannexes{wikipedia_domain_function} $A$ et un codomaine \citeannexes{wikipedia_codomain} $B$. | ||||
|  | ||||
| If the domain is the same as the codomain then the function is an endormorphsim \ref{definition:endomorphism} applied on set theory \ref{set_theory}. | ||||
|  | ||||
| \subsection{Notation} | ||||
| %TODO Complete subsection | ||||
|  | ||||
| $A \longrightarrow B$ | ||||
|  | ||||
| $ x \longrightarrow f(x)$ | ||||
|  | ||||
| \langsubsection{Injectivité}{Injectivity} | ||||
| %TODO Complete subsection | ||||
| \langsubsection{Injectivité}{Injectivity} \label{definition:injective} | ||||
|  | ||||
| Source: \citeannexes{wikipedia_injective_function} | ||||
|  | ||||
| Une fonction $f$ de $E$ dans $F$ est dite \textbf{injective} si, et seulement si, $\forall (a,b) \in E, f(a) = f(b) \Rightarrow a = b$. | ||||
|  | ||||
| \langsubsection{Surjectivité}{Surjectivity} | ||||
| %TODO Complete subsection | ||||
| \langsubsection{Surjectivité}{Surjectivity} \label{definition:surjective} | ||||
|  | ||||
| Source: \citeannexes{wikipedia_surjective_function} | ||||
|  | ||||
| Une fonction $f$ de $E$ dans $F$ est dite \textbf{surjective} si, et seulement si, $\forall y \in F, \exists x \in E : y = f(x)$. | ||||
|  | ||||
| \langsubsection{Bijectivité}{Bijectivity} | ||||
| %TODO Complete subsection | ||||
|  | ||||
| Une fonction $f$ de $E$ dans $F$ est dite \textbf{bijective} si, et seulement si, elle est à la fois injective et surjective ou $\forall y \in F, \exists! x \in E : y = f(x)$. | ||||
| Source: \citeannexes{wikipedia_bijection} \label{definition:bijection} | ||||
|  | ||||
| Une fonction $f$ de $E$ dans $F$ est dite \textbf{bijective} si, et seulement si, elle est à la fois injective \ref{definition:injective} et surjective \ref{definition:surjective} ou $\forall y \in F, \exists! x \in E : y = f(x)$. | ||||
|  | ||||
| Every bijection is an isomorphism \ref{definition:isomorphism} applied on set theory \ref{set_theory}. | ||||
|   | ||||
| @@ -130,7 +130,7 @@ Toute sous-suites (ou suites extraite) d'un suite convergente vers $l \in E$ con | ||||
| Montrer que l’ensemble $\{x_n, n \in \N\}$ est borné. | ||||
| \\ | ||||
|  | ||||
| Sachant que $(x_n) \ in E$ converge vers $l \in E$ \&\& $\epsilon > 0$. | ||||
| Sachant que $(x_n) \in E$ converge vers $l \in E \land \epsilon > 0$. | ||||
|  | ||||
| $\Leftrightarrow \exists y \in E$ tel que $\{\forall n \in \N, x_n, l\} \subset \bar{\mathbb{B}}(y, \epsilon) \subset E$. | ||||
|  | ||||
|   | ||||
							
								
								
									
										1
									
								
								main.tex
									
									
									
									
									
								
							
							
						
						
									
										1
									
								
								main.tex
									
									
									
									
									
								
							| @@ -77,6 +77,7 @@ De de manière honteusement démagogique, je vous remercie tout lecteurs de ce n | ||||
| \input{contents/music_theory} | ||||
| \input{contents/philosophy} | ||||
| \input{contents/linguistic} | ||||
| \input{contents/definitions} | ||||
|  | ||||
| \addcontentsline{toc}{chapter}{Références} | ||||
| \begingroup | ||||
|   | ||||
| @@ -1,4 +1,7 @@ | ||||
| \ProvidesPackage{language_selector} | ||||
| \ProvidesPackage{packages/language_selector} | ||||
|  | ||||
| \newcommand{\subsubsubsection}[1]{\paragraph{#1}\smallskip} | ||||
| \newcommand{\subsubsubsubsection}[1]{\subparagraph{#1}\smallskip} | ||||
|  | ||||
| \DeclareOption{french}{ | ||||
| 	\def\langoption{french} | ||||
| @@ -9,6 +12,7 @@ | ||||
| 	\newcommand{\langsubsection}[2]{\subsection{#1}} | ||||
| 	\newcommand{\langsubsubsection}[2]{\subsubsection{#1}} | ||||
| 	\newcommand{\langsubsubsubsection}[2]{\subsubsubsection{#1}} | ||||
| 	\newcommand{\langsubsubsubsubsection}[2]{\subsubsubsubsection{#1}} | ||||
| 	\newcommand{\langnewcites}[3]{\newcites{#1}{#2}} | ||||
| } | ||||
|  | ||||
| @@ -21,6 +25,7 @@ | ||||
| 	\newcommand{\langsubsection}[2]{\subsection{#2}} | ||||
| 	\newcommand{\langsubsubsection}[2]{\subsubsection{#2}} | ||||
| 	\newcommand{\langsubsubsubsection}[2]{\subsubsubsection{#2}} | ||||
| 	\newcommand{\langsubsubsubsubsection}[2]{\subsubsubsubsection{#2}} | ||||
| 	\newcommand{\langnewcites}[3]{\newcites{#1}{#3}} | ||||
| } | ||||
|  | ||||
|   | ||||
| @@ -1,7 +1,9 @@ | ||||
| \ProvidesPackage{macros} | ||||
| \ProvidesPackage{packages/macros} | ||||
|  | ||||
| \RequirePackage{amsfonts}                                % Include missing symbols s.a "Natural Numbers" | ||||
|  | ||||
| \usepackage{amsthm}   % for 'proof' environment | ||||
|  | ||||
| % Snippet to add dots to TOC | ||||
| % Thanks to "user11232" at https://tex.stackexchange.com/questions/53898/how-to-get-lines-with-dots-in-the-table-of-contents-for-sections | ||||
| %\usepackage{tocloft} | ||||
| @@ -42,6 +44,7 @@ | ||||
| \newcommand{\functiondef}[2]{\hspace{15pt}#1 \longmapsto #2} | ||||
| \newcommand{\otherwise}{\text{Sinon}} | ||||
| %\newcommand{\otherwise}{\text{Otherwise}} | ||||
| \DeclareMathOperator{\union}{\cup} | ||||
|  | ||||
| \renewcommand{\smallskip}{\vspace{3pt}} | ||||
| \renewcommand{\medskip}{\vspace{6pt}} | ||||
|   | ||||
| @@ -1,4 +1,4 @@ | ||||
| \ProvidesPackage{themes} | ||||
| \ProvidesPackage{packages/themes} | ||||
|  | ||||
| % Add many functions for colour themes | ||||
| \RequirePackage{xcolor} | ||||
|   | ||||
| @@ -287,7 +287,7 @@ | ||||
| } | ||||
| @online{wikipedia_complex_number, | ||||
|    title = {Complex number}, | ||||
|    url   = {https://en.wikipedia.org/wiki/Complex_number} | ||||
|    url   = {https://en.wikipedia.org/wiki/Complex\_number} | ||||
| } | ||||
| @online{wikipedia_quaternion, | ||||
|    title = {Quaternion}, | ||||
| @@ -301,3 +301,35 @@ | ||||
|    title = {Sedenion}, | ||||
|    url   = {https://en.wikipedia.org/wiki/Sedenion} | ||||
| } | ||||
| @online{wikipedia_function_mathematics, | ||||
|   title = {Function (mathematics)}, | ||||
|   url   = {https://en.wikipedia.org/wiki/Function\_(mathematics)} | ||||
| } | ||||
| @online{wikipedia_domain_function, | ||||
|   title = {Domain of a function}, | ||||
|   url   = {https://en.wikipedia.org/wiki/Domain\_of\_a\_function} | ||||
| } | ||||
| @online{wikipedia_codomain, | ||||
|   title = {Codomain}, | ||||
|   url   = {https://en.wikipedia.org/wiki/Codomain} | ||||
| } | ||||
| @online{wikipedia_set_theory, | ||||
|   title = {Set theory}, | ||||
|   url   = {https://en.wikipedia.org/wiki/Set\_theory} | ||||
| } | ||||
| @online{wikipedia_injective_function, | ||||
|   title = {Injective function}, | ||||
|   url   = {https://en.wikipedia.org/wiki/Injective\_function} | ||||
| } | ||||
| @online{wikipedia_surjective_function, | ||||
|   title = {Surjective function}, | ||||
|   url   = {https://en.wikipedia.org/wiki/Surjective\_function} | ||||
| } | ||||
| @online{wikipedia_bijection, | ||||
|   title = {Bijection}, | ||||
|   url   = {https://en.wikipedia.org/wiki/Bijection} | ||||
| } | ||||
| @online{wikipedia_hyperbolic_functions, | ||||
|   title = {Hyperbolic functions}, | ||||
|   url   = {https://en.wikipedia.org/wiki/Hyperbolic\_functions} | ||||
| } | ||||
|   | ||||
| @@ -433,3 +433,39 @@ in a principled way.}, | ||||
|   biburl     = {https://dblp.org/rec/journals/corr/abs-2012-00152.bib}, | ||||
|   bibsource  = {dblp computer science bibliography, https://dblp.org} | ||||
| } | ||||
| @book{carlyle_2005_french_revolution, | ||||
|   title     = {The French Revolution}, | ||||
|   author    = {Carlyle, T. and Ball, A.H.R.}, | ||||
|   isbn      = {9780486445137}, | ||||
|   page      = {242}, | ||||
|   lccn      = {2005047548}, | ||||
|   series    = {Dover Value Editions}, | ||||
|   year      = {2005}, | ||||
|   publisher = {Dover Publications} | ||||
| } | ||||
| @book{robertson_2003_excess, | ||||
|   title     = {An Excess of Phobias and Manias}, | ||||
|   author    = {John G. Robertson}, | ||||
|   page      = {75}, | ||||
|   isbn      = {9780963091932}, | ||||
|   year      = {2003}, | ||||
|   publisher = {Senior Scribe Publications} | ||||
| } | ||||
| @book{tucker_1970_liberty, | ||||
|   title     = {Liberty}, | ||||
|   author    = {Benjamin Ricketson Tucker}, | ||||
|   page      = {361}, | ||||
|   volumes   = {235,312}, | ||||
|   year      = {1970}, | ||||
|   number    = {vol.~9~{\`a}~10~;vol.~235~{\`a}~312}, | ||||
|   lccn      = {72022711}, | ||||
|   series    = {Radical periodicals in the United States}, | ||||
|   publisher = {Greenwood Reprint Corporation} | ||||
| } | ||||
| @book{wheeler_1910_literature, | ||||
|   title     = {Current Literature}, | ||||
|   author    = {Edward Jewitt Wheeler}, | ||||
|   page      = {564}, | ||||
|   volumes   = {49}, | ||||
|   year      = {1910} | ||||
| } | ||||
|   | ||||
		Reference in New Issue
	
	Block a user