Compare commits
	
		
			12 Commits
		
	
	
		
			c1a6223f54
			...
			7bc99a71f4
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
|  | 7bc99a71f4 | ||
|  | 4df2923c6a | ||
|  | 4cbadb17a4 | ||
|  | 89bbc9adf9 | ||
|  | b16f6de66d | ||
|  | 1a17854c3c | ||
|  | 55ac1c6c20 | ||
|  | 6af3c70835 | ||
|  | e7f324dbe4 | ||
|  | 4688e13c93 | ||
|  | b6e7429363 | ||
|  | fb7b817d5f | 
							
								
								
									
										9
									
								
								Makefile
									
									
									
									
									
								
							
							
						
						
									
										9
									
								
								Makefile
									
									
									
									
									
								
							| @@ -1,9 +1,11 @@ | |||||||
| OUT_DIR := out | OUT_DIR := out | ||||||
| GRAPHS_DIR := graphs | GRAPHS_DIR := graphs | ||||||
| CONTENTS_DIR := contents | CONTENTS_DIR := contents | ||||||
|  | PACKAGES_DIR := packages | ||||||
| REFERENCES_DIR := references | REFERENCES_DIR := references | ||||||
|  |  | ||||||
| CONTENTS := $(wildcard $(CONTENTS)/*.tex) | CONTENTS := $(wildcard $(CONTENTS_DIR)/*.tex) | ||||||
|  | PACKAGES := $(wildcard $(PACKAGES_DIR)/*.sty) | ||||||
| REFERENCES := $(wildcard $(REFERENCES_DIR)/*.bib) | REFERENCES := $(wildcard $(REFERENCES_DIR)/*.bib) | ||||||
| GRAPHS := $(wildcard $(GRAPHS_DIR)/*.gv) | GRAPHS := $(wildcard $(GRAPHS_DIR)/*.gv) | ||||||
| GRAPHS_IMG := $(GRAPHS:$(GRAPHS_DIR)/%.gv=$(OUT_DIR)/%.gv.png) | GRAPHS_IMG := $(GRAPHS:$(GRAPHS_DIR)/%.gv=$(OUT_DIR)/%.gv.png) | ||||||
| @@ -29,11 +31,12 @@ references: $(REFERENCES) | |||||||
| 	bibtex $(OUT_DIR)/annexes | 	bibtex $(OUT_DIR)/annexes | ||||||
| 	bibtex $(OUT_DIR)/references | 	bibtex $(OUT_DIR)/references | ||||||
|  |  | ||||||
| --inner_pdf: | .PHONY: --inner_pdf | ||||||
|  | --inner_pdf: $(CONTENTS) $(PACKAGES) $(REFERENCES) $(GRAPHS) | ||||||
| 	pdflatex -output-directory $(OUT_DIR) main.tex | 	pdflatex -output-directory $(OUT_DIR) main.tex | ||||||
|  |  | ||||||
| .PHONY: pdf | .PHONY: pdf | ||||||
| pdf: $(GRAPHS_IMG) --inner_pdf references index --inner_pdf | pdf: $(GRAPHS_IMG) --inner_pdf references index --inner_pdf references --inner_pdf | ||||||
|  |  | ||||||
| .PHONY: preview | .PHONY: preview | ||||||
| preview: pdf | preview: pdf | ||||||
|   | |||||||
| @@ -4,22 +4,45 @@ | |||||||
| \section{Structures} | \section{Structures} | ||||||
| %TODO Complete section | %TODO Complete section | ||||||
|  |  | ||||||
| \subsection{Monoïd} | \subsection{Magma} \label{definition:magma} | ||||||
| %TODO Complete subsection |  | ||||||
|  |  | ||||||
| \langsubsection{Corps}{Field} | Soit une structure $S$ avec une loi de composition interne $(+)$ notée $(S,+)$ tel que $\forall(a,b) \in S, a + b \in S$. | ||||||
| %TODO Complete subsection |  | ||||||
|  |  | ||||||
| \langsubsection{Anneau}{Ring} | \langsubsection{Magma unital}{Unital magma} \label{definition:unital_magma} | ||||||
|  |  | ||||||
|  | Soit un magma \ref{definition:magma} $(S,+)$ untial en $0_e$ tel que $\exists 0_e \in S, \forall a \in S, 0_e + a = a$. | ||||||
|  |  | ||||||
|  | \subsection{Monoïd} \label{definition:monoid} | ||||||
|  |  | ||||||
|  | Soit un magma unital \ref{definition:unital_magma} $(S,+)$ dont la loi de composition est associative \ref{definition:associativity}. | ||||||
|  |  | ||||||
|  | \langsubsection{Groupe}{Group} \label{definition:group} | ||||||
|  |  | ||||||
|  | Soit un monoid \ref{definition:monoid} $(G,+)$ ayant un élément inverse tel que $\forall a \in G, \exists a^{-1} \in G, a + a^{-1} = 0_e$. | ||||||
|  |  | ||||||
|  | \langsubsubsection{Groupe abélien}{Abelian group} \label{definition:abelian_group} | ||||||
|  |  | ||||||
|  | Un groupe abélien est un groupe \ref{definition:group} dont la loi de composition est commutatif \ref{definition:commutativity}. | ||||||
|  |  | ||||||
|  | \langsubsection{Corps}{Field} \label{definition:field} | ||||||
|  |  | ||||||
|  | Soit une structure $F$ avec deux lois de composition interne $(+)$ et $(\times)$ notée $(F,+,\times)$. | ||||||
|  |  | ||||||
|  | \begin{itemize} | ||||||
|  | 	\item{$(F,+)$ est un groupe \ref{definition:group} unital en $0_e$} | ||||||
|  | 	\item{$(F\backslash\{0_e\},\times)$ est un groupe \ref{definition:group}} | ||||||
|  | \end{itemize} | ||||||
|  |  | ||||||
|  | \langsubsection{Anneau}{Ring} \label{definition:ring} | ||||||
| %TODO Complete subsection | %TODO Complete subsection | ||||||
|  |  | ||||||
| \section{Matrices} | \section{Matrices} | ||||||
| %TODO Complete section | %TODO Complete section | ||||||
|  |  | ||||||
| Un matrice est une structure qui permet de regrouper plusieurs éléments d'un corps $\K$ en un tableau de $n$ lignes et $m$ colonnes ou plus et est notée $\mathcal{M}_{n,m}(\K)$. Dans le cas d'une matrice carrée , on peux simplifier la notation en $\mathcal{M}_{n}(\K)$. | Un matrice est une structure qui permet de regrouper plusieurs éléments d'un corps \ref{definition:field} $\K$ en un tableau de $n$ lignes et $m$ colonnes ou plus et est notée $\mathcal{M}_{n,m}(\K)$. Dans le cas d'une matrice carrée , on peux simplifier la notation en $\mathcal{M}_{n}(\K)$. | ||||||
|  |  | ||||||
| \begin{definition_sq} \label{definition:square_matrix} | \begin{definition_sq} \label{definition:square_matrix} | ||||||
| 	Une matrice carrée (notée $\mathcal{M}_n(\K)$) est une matrice $\mathcal{M}_{n,m}(\K)$ d'un corps $\K$ où $n = m$. | 	Une matrice carrée (notée $\mathcal{M}_n(\K)$) est une matrice $\mathcal{M}_{n,m}(\K)$ d'un corps $\K$ où $n + m$. | ||||||
| \end{definition_sq} | \end{definition_sq} | ||||||
|  |  | ||||||
| \begin{definition_sq} \label{definition:identity_matrix} | \begin{definition_sq} \label{definition:identity_matrix} | ||||||
| @@ -29,7 +52,7 @@ Un matrice est une structure qui permet de regrouper plusieurs éléments d'un c | |||||||
| \subsection{Trace} | \subsection{Trace} | ||||||
| %TODO Complete subsection | %TODO Complete subsection | ||||||
|  |  | ||||||
| $\forall A \in \mathcal{M}_{n}, tr(A)=\sum_{k=1}^na_{kk}$ | $\forall A \in \mathcal{M}_{n}, tr(A)=\sum_{k=0}^na_{kk}$ | ||||||
|  |  | ||||||
| $tr\in\mathcal{L}(\mathcal{M}_n(\K),\K)$ | $tr\in\mathcal{L}(\mathcal{M}_n(\K),\K)$ | ||||||
|  |  | ||||||
| @@ -58,12 +81,9 @@ $\function{D}{\mathcal{M}_{m\times n}(\R)}{R}$ | |||||||
| \langsubsubsection{Axiomes}{Axioms} | \langsubsubsection{Axiomes}{Axioms} | ||||||
| %%TODO Complete subsubsection | %%TODO Complete subsubsection | ||||||
|  |  | ||||||
|  |  | ||||||
| $\forall M \in \mathcal{M}_{m\times n}$ | $\forall M \in \mathcal{M}_{m\times n}$ | ||||||
| \begin{itemize} | \begin{itemize} | ||||||
| 	\item{$M' = \begin{pmatrix}1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \end{pmatrix}M$} | 	\item{$\forall \lambda \in \K, D(\lambda M) = \lambda D(M)$} | ||||||
| 	\item{$\forall \lambda \in K, D(\lambda M) = \lambda D(M)$} |  | ||||||
| 	\item{} |  | ||||||
| \end{itemize} | \end{itemize} | ||||||
|  |  | ||||||
| \langsubsubsection{Cas 2x2}{2x2 case} | \langsubsubsection{Cas 2x2}{2x2 case} | ||||||
| @@ -148,38 +168,70 @@ $A \in \mathcal{T}^+_{n,n}$ | |||||||
|  |  | ||||||
| $A = \begin{bmatrix}x_1, \cdots, x_n\end{bmatrix}$ | $A = \begin{bmatrix}x_1, \cdots, x_n\end{bmatrix}$ | ||||||
|  |  | ||||||
| \langsection{Espaces vectoriels}{Vectors spaces} | \langsection{Espaces vectoriels}{Vectors spaces} \label{definition:vector_space} | ||||||
| %TODO Complete section | %TODO Complete section | ||||||
|  |  | ||||||
| Soit $(E,+)$ un groupe abélien (i.e. commutatif) de $\mathbb{K}$ | Soit $(E,+)$ un groupe abélien \ref{definition:abelian_group} de $\K$ | ||||||
|  |  | ||||||
| \begin{itemize} | \begin{itemize} | ||||||
| 	\item{muni d'une loi de composition interne notée $+$} | 	\item{muni d'une loi de composition externe d'un corps $\K$ tel que $\K*E \rightarrow E$ vérifiant $(\alpha,x) \rightarrow \alpha x$} | ||||||
| 	\item{muni d'une loi de composition externe $\mathbb{K}*E \rightarrow E$ vérifiant $(\alpha,x) \rightarrow \alpha x$} |  | ||||||
| \end{itemize} | \end{itemize} | ||||||
|  |  | ||||||
| \bigskip | \bigskip | ||||||
| Et vérifiant $\forall(\alpha,\beta) \in \mathbb{K}, \forall(a,b,c) \in E$ | Et vérifiant $\forall(\alpha,\beta) \in \K, \forall(a,b,c) \in E$ | ||||||
|  |  | ||||||
| \begin{itemize} | \begin{itemize} | ||||||
| 	\item{Commutativité $a + b = b + a$} | 	\item{Unital en $*$} | ||||||
| 	\item{Associativité $(a + b) + c = a + (b + c)$} | 	\item{Distributivité (gauche et droite) $+$ de $\K \Leftrightarrow a(\alpha+\beta)+(\alpha+\beta)a+\alpha a + \beta a$} | ||||||
| 	\item{Élement neutre de $+ \Leftrightarrow \exists 0_E \in E : a + 0_E = a$} | 	\item{Distributivité (gauche et droite) $*$ de $\K \Leftrightarrow a(\alpha*\beta)+(\alpha*\beta)a+\alpha(\beta a)$} | ||||||
| 	\item{Élement neutre de $* \Leftrightarrow \exists 1_K \in K : a \cdot 1_K = a$} |  | ||||||
| 	\item{Élement opposé $\forall a \in E, \exists b \in E : a + b = b + a = 0_E$} |  | ||||||
| 	\item{Stabilité par $+ \Leftrightarrow a + b \in E$} |  | ||||||
| 	\item{Distributivité $+$ de $\mathbb{K} \Leftrightarrow (\alpha+\beta)a=\alpha a + \beta a$} |  | ||||||
| 	\item{Distributivité $*$ de $\mathbb{K} \Leftrightarrow (\alpha*\beta)a=\alpha(\beta a)$} |  | ||||||
| \end{itemize} | \end{itemize} | ||||||
|  |  | ||||||
| \langsubsection{sous-espaces vectoriels}{Sub vector spaces} | \langsubsection{Sous-espaces vectoriels}{Sub vector spaces} \label{definition:sub_vector_space} | ||||||
| %TODO Complete subsection | %TODO Complete subsection | ||||||
|  |  | ||||||
| Soit $E$ un $\mathbb{K}$-espace vectoriel et $F \subset E$ | Soit $E$ un $\K$-espace vectoriel \ref{definition:vector_space}, $F$ est une sous-espace vectoriel (i.e. « s.e.v ») si $F \subset E$ ainsi que les propriétés suivantes : | ||||||
|  |  | ||||||
| \begin{itemize} | \begin{itemize} | ||||||
| 	\item{$F \ne \emptyset$} | 	\item{$F \ne \emptyset$} | ||||||
| 	\item{$0_E \in F$} | 	\item{$0_E \in F$} | ||||||
| 	\item{$\forall(\alpha,\beta)\in\mathbb{K}, \forall(x,y)\in F, \alpha x+\beta y\in F$} | 	\item{$\forall(\alpha, \beta) \in \K, \forall(x,y)\in F, \alpha x + \beta y \in F$} | ||||||
| \end{itemize} | \end{itemize} | ||||||
|  |  | ||||||
|  | \begin{theorem_sq} \label{theorem:union_sub_vector_spaces} | ||||||
|  | 	Soit $F$ et $G$ s.e.v \ref{definition:sub_vector_space} de $E$. « $F \union G$ est un s.e.v de $E$ » $ \equivalance (F \subset G) \lor (G \subset F)$. | ||||||
|  | \end{theorem_sq} | ||||||
|  |  | ||||||
|  | \begin{proof} | ||||||
|  |  | ||||||
|  | Soit $F$ et $G$ s.e.v \ref{definition:sub_vector_space} de $E$. | ||||||
|  |  | ||||||
|  | \begin{centering} | ||||||
|  | $\implies$ | ||||||
|  | \end{centering} | ||||||
|  |  | ||||||
|  | $(F \subset G) \lor (G \subset F) \implies (G $ s.e.v de $E) \lor (F $ s.e.v de $E) \implies (F \union G)$ s.e.v de $E$. | ||||||
|  |  | ||||||
|  | \begin{centering} | ||||||
|  | $\Leftarrow$ | ||||||
|  | \end{centering} | ||||||
|  |  | ||||||
|  | $(F \union G) $ s.e.v de $E \land [(F \not\subset G) \land (G \not\subset F)]$ | ||||||
|  |  | ||||||
|  | Let $x \in F \setminus G$ and $y \in G \setminus F$ | ||||||
|  |  | ||||||
|  | $(F\union G)$ s.e.v de $E \implies x + y \in F \union G$ | ||||||
|  |  | ||||||
|  | B.W.O.C let's suppose $x + y \in F \setminus G$ | ||||||
|  |  | ||||||
|  | $\implies (x + y) - x \in F \setminus G$ | ||||||
|  |  | ||||||
|  | $\implies y \in F \setminus G \land y \in G \setminus F \implies \bot$ | ||||||
|  |  | ||||||
|  | By a similar argument $y \notin G \setminus F$ | ||||||
|  |  | ||||||
|  | $\implies (y \notin F \setminus G) \land (y \notin G \setminus F) \implies \bot$ | ||||||
|  |  | ||||||
|  | $\implies F \subset G \lor  G \subset F$ | ||||||
|  |  | ||||||
|  | \end{proof} | ||||||
|  |  | ||||||
|   | |||||||
| @@ -1,9 +1,27 @@ | |||||||
| \langchapter{Théorie des Catégories}{Category theory} | \langchapter{Théorie des Catégories}{Category theory} | ||||||
| %TODO Complete chapter | %TODO Complete chapter | ||||||
|  |  | ||||||
|  | Category is a general theory of mathematical structures and their relations. | ||||||
|  |  | ||||||
|  | \langsection{Définition}{Definition} | ||||||
|  |  | ||||||
|  | A category $C$ is a collection of objects and morphisms | ||||||
|  |  | ||||||
| \langsection{Morphismes}{Morphisms} | \langsection{Morphismes}{Morphisms} | ||||||
| %TODO Complete section | %TODO Complete section | ||||||
|  |  | ||||||
|  | \langsubsection{Isomorphisme}{Isomorphism} \label{definition:isomorphism} | ||||||
|  | %TODO Complete section | ||||||
|  |  | ||||||
|  | \langsubsection{Endomorphisme}{Endomorphism} \label{definition:endomorphism} | ||||||
|  | %TODO Complete section | ||||||
|  |  | ||||||
|  | \langsubsection{Homomorphisme}{Homomorphism} | ||||||
|  | %TODO Complete section | ||||||
|  |  | ||||||
|  | \langsubsection{Homeomorphisme}{Homeomorphism} | ||||||
|  | %TODO Complete section | ||||||
|  |  | ||||||
| \section{Functors} | \section{Functors} | ||||||
| %TODO Complete section | %TODO Complete section | ||||||
|  |  | ||||||
|   | |||||||
							
								
								
									
										14
									
								
								contents/definitions.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										14
									
								
								contents/definitions.tex
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,14 @@ | |||||||
|  | \langchapter{Définitions}{Definitions} | ||||||
|  | %TODO Complete chapter | ||||||
|  |  | ||||||
|  | \langsection{Psychologie}{Psychology} | ||||||
|  | %TODO Complete section | ||||||
|  |  | ||||||
|  | \langsubsubsection{Eleutheromanie}{Eleuteromania} | ||||||
|  |  | ||||||
|  | Eleutheromania, or eleutherophilia is "a mania or frantic zeal for freedom" \citereferences{carlyle_2005_french_revolution}. | ||||||
|  | The term is sometimes used in a psychological context, sometimes likening it to a mental disorder, such as John G Robertson's definition, that describes it as a mad zeal or irresistible craving for freedom \citereferences{robertson_2003_excess}. | ||||||
|  | However, it's also sometimes used to simply mean a passion for liberty \citereferences{tucker_1970_liberty}. | ||||||
|  | Individuals with this condition are called eleutheromaniacs \citereferences{wheeler_1910_literature}. | ||||||
|  | An antonym for the term is eleutherophobia. An individual that fears freedom is an eleutherophobe \citereferences{robertson_2003_excess}. | ||||||
|  |  | ||||||
| @@ -126,7 +126,7 @@ $\begin{Vmatrix} a & b \\ c & d \end{Vmatrix}$ | |||||||
| \langsection{Informatique}{Computer science} | \langsection{Informatique}{Computer science} | ||||||
| %TODO Complete section | %TODO Complete section | ||||||
|  |  | ||||||
| \subsection{LaTex} | \subsection{LaTeX} | ||||||
|  |  | ||||||
| \begin{verbatim} | \begin{verbatim} | ||||||
| 	\begin{verbatim} | 	\begin{verbatim} | ||||||
|   | |||||||
| @@ -4,25 +4,31 @@ | |||||||
| La logique consiste en des opérations effectuées uniquement sur des variables (notées $P,Q,R$) n'ayant pour valeur soit Vrai (noté \true), soit Faux (noté \false). | La logique consiste en des opérations effectuées uniquement sur des variables (notées $P,Q,R$) n'ayant pour valeur soit Vrai (noté \true), soit Faux (noté \false). | ||||||
| %Logic consists of operations done on sole values : True $T$ and False $F$. | %Logic consists of operations done on sole values : True $T$ and False $F$. | ||||||
|  |  | ||||||
|  | \langsection{Principle de tiers exclu}{Excluding middle} | ||||||
|  |  | ||||||
|  | $\true \equivalance \lnot \false$ | ||||||
|  |  | ||||||
|  | $\false \equivalance \lnot \true$ | ||||||
|  |  | ||||||
| \langsection{Relation Binaires}{Binary relations} | \langsection{Relation Binaires}{Binary relations} | ||||||
| %TODO Complete section | %TODO Complete section | ||||||
|  |  | ||||||
| \langsubsection{Réflexion}{Reflexivity} | \langsubsection{Réflexion}{Reflexivity} \label{definition:reflexivity} | ||||||
| % TODO Complete subsection | % TODO Complete subsection | ||||||
|  |  | ||||||
| Une relation $\Rel$ sur $E$ est dite \textbf{réflexive} si et seulement si $\forall a \in E, a \Rel a$. | Une relation $\Rel$ sur $E$ est dite \textbf{réflexive} si et seulement si $\forall a \in E, a \Rel a$. | ||||||
|  |  | ||||||
| \langsubsection{Transitivité}{Transitivity} | \langsubsection{Transitivité}{Transitivity} \label{definition:transitivity} | ||||||
| % TODO Complete subsection | % TODO Complete subsection | ||||||
|  |  | ||||||
| Une relation $\Rel$ sur $E$ est dite \textbf{transitive} si et seulement si $\forall (a,b) \in E, a \Rel b \land b \Rel c \equivalance a \Rel c$. | Une relation $\Rel$ sur $E$ est dite \textbf{transitive} si et seulement si $\forall (a,b) \in E, a \Rel b \land b \Rel c \equivalance a \Rel c$. | ||||||
|  |  | ||||||
| \langsubsection{Associativité}{Associativity} | \langsubsection{Associativité}{Associativity} \label{definition:associativity} | ||||||
| % TODO Complete subsection | % TODO Complete subsection | ||||||
|  |  | ||||||
| Une relation $\Rel$ sur $E$ est dite \textbf{associative} si et seulement si $\forall (a,b) \in E, (a \Rel b) \Rel c \equivalance a \Rel (b \Rel c) \Leftrightarrow a \Rel b \Rel c$. | Une relation $\Rel$ sur $E$ est dite \textbf{associative} si et seulement si $\forall (a,b) \in E, (a \Rel b) \Rel c \equivalance a \Rel (b \Rel c) \Leftrightarrow a \Rel b \Rel c$. | ||||||
|  |  | ||||||
| \langsubsection{Commutativité}{Commutativity} | \langsubsection{Commutativité}{Commutativity} \label{definition:commutativity} | ||||||
| % TODO Complete subsection | % TODO Complete subsection | ||||||
|  |  | ||||||
| Une relation $\Rel$ sur $E$ est dite \textbf{commutative} si et seulement si $\forall (a,b) \in E, a \Rel b = b \Rel a$. | Une relation $\Rel$ sur $E$ est dite \textbf{commutative} si et seulement si $\forall (a,b) \in E, a \Rel b = b \Rel a$. | ||||||
|   | |||||||
| @@ -86,7 +86,7 @@ Chaque application généré de $g_c$ avec $c \in \N^*$ est injective avec $\N$, | |||||||
|  |  | ||||||
| \begin{itemize} \label{theorem:totally_ordered_natural_numbers} | \begin{itemize} \label{theorem:totally_ordered_natural_numbers} | ||||||
| 	\item{L'ensemble est totalement ordonnée : $\forall n \in \N, \exists k \suchas k = n + 1 \land n < k$} | 	\item{L'ensemble est totalement ordonnée : $\forall n \in \N, \exists k \suchas k = n + 1 \land n < k$} | ||||||
| 	\item{On peut diviser l'ensemble en deux ensembles distincts : $\forall n \in \N, \exists! k \in \N \suchas n := \begin{cases} 2k & \text{pair} \\ 2k+1 & \text{Impair} \end{cases}$} | 	\item{On peut diviser l'ensemble en deux ensembles distincts : $\forall n \in \N, \exists! k \in \N \suchas n := \begin{cases} 2k & \text{paire} \\ 2k+1 & \text{Impaire} \end{cases}$} | ||||||
| \end{itemize} | \end{itemize} | ||||||
|  |  | ||||||
| \begin{theorem_sq} | \begin{theorem_sq} | ||||||
| @@ -139,9 +139,9 @@ $\forall (p,q) \in \Q, \forall n \in \N^*, \frac{p}{q} \Leftrightarrow \frac{p \ | |||||||
| \langsubsection{Opérateurs}{Operators} | \langsubsection{Opérateurs}{Operators} | ||||||
| %TODO Complete subsection | %TODO Complete subsection | ||||||
|  |  | ||||||
| $\forall ((p,q), (a,b)) \in \Q^2, \frac{p}{q} + \frac{a}{b} = \frac{pb + aq}{qb}$ | $\forall ((p,q), (a,b)) \in \Q, \frac{p}{q} + \frac{a}{b} = \frac{pb + aq}{qb}$ | ||||||
|  |  | ||||||
| $\forall ((p,q), (a,b)) \in \Q^2, \frac{p}{q} \cdot \frac{a}{b} = \frac{pa}{qb}$ | $\forall ((p,q), (a,b)) \in \Q, \frac{p}{q} \cdot \frac{a}{b} = \frac{pa}{qb}$ | ||||||
|  |  | ||||||
| $\forall (p,q) \in \Q, \forall k \in \Z, (\frac{p}{q})^k = \frac{p^k}{q^k}$ | $\forall (p,q) \in \Q, \forall k \in \Z, (\frac{p}{q})^k = \frac{p^k}{q^k}$ | ||||||
|  |  | ||||||
| @@ -172,8 +172,7 @@ $\functiondef{(p,q)}{P_1^{\frac{p}{|p|} + 1}P_2^pP_3^q}$ | |||||||
|  |  | ||||||
| \langsubsection{Construction de Cayley–Dickson}{Cayley–Dickson's construction} | \langsubsection{Construction de Cayley–Dickson}{Cayley–Dickson's construction} | ||||||
|  |  | ||||||
| %\citeannexes{wikipedia_cayley_dickson} | Source: \citeannexes{wikipedia_cayley_dickson} | ||||||
| \citeannexes{project_vae} |  | ||||||
|  |  | ||||||
| \langsubsection{Coupes de Dedekind}{Dedekind's cuts} | \langsubsection{Coupes de Dedekind}{Dedekind's cuts} | ||||||
| %TODO Complete subsection | %TODO Complete subsection | ||||||
| @@ -181,9 +180,9 @@ $\functiondef{(p,q)}{P_1^{\frac{p}{|p|} + 1}P_2^pP_3^q}$ | |||||||
| \langsection{Construction des complexes $(\C)$}{Construction of complex numbers} | \langsection{Construction des complexes $(\C)$}{Construction of complex numbers} | ||||||
| %TODO Complete section | %TODO Complete section | ||||||
|  |  | ||||||
| \citeannexes{wikipedia_complex_numbers} | Source: \citeannexes{wikipedia_complex_number} | ||||||
|  |  | ||||||
| $\C = (a,b) \in R^2, a + ib ~= \R^2 $ | $\C = (a,b) \in R, a + ib ~= \R $ | ||||||
|  |  | ||||||
| $i^2 = -1$ | $i^2 = -1$ | ||||||
|  |  | ||||||
| @@ -204,7 +203,7 @@ $i^2 = -1$ | |||||||
| \langsubsection{Relations binaries}{Binary relations} | \langsubsection{Relations binaries}{Binary relations} | ||||||
| %TODO Complete subsection | %TODO Complete subsection | ||||||
|  |  | ||||||
| $\forall ((a,b), (c,d)) \in \C^2, a = c \land b = d \Leftrightarrow a + ib = c + id$ | $\forall ((a,b), (c,d)) \in \C, a = c \land b = d \Leftrightarrow a + ib = c + id$ | ||||||
|  |  | ||||||
| \langsubsection{Opérateurs}{Operators} | \langsubsection{Opérateurs}{Operators} | ||||||
| %TODO Complete subsection | %TODO Complete subsection | ||||||
| @@ -213,7 +212,7 @@ Il est impossible d'avoir une relation d'ordre dans le corps des complexes mais | |||||||
|  |  | ||||||
| \subsubsection{Ordre lexicographique} | \subsubsection{Ordre lexicographique} | ||||||
|  |  | ||||||
| $\forall((a,b),(c,d)) \in \C^2, a + ib \Rel_L c + id := \begin{cases} | $\forall((a,b),(c,d)) \in \C, a + ib \Rel_L c + id := \begin{cases} | ||||||
| 	a < c & \implies a + ib < c + id \\ | 	a < c & \implies a + ib < c + id \\ | ||||||
| 	\otherwise & \begin{cases} | 	\otherwise & \begin{cases} | ||||||
| 		b < d & \implies a + ib < c + id \\ | 		b < d & \implies a + ib < c + id \\ | ||||||
| @@ -223,7 +222,7 @@ $\forall((a,b),(c,d)) \in \C^2, a + ib \Rel_L c + id := \begin{cases} | |||||||
|  |  | ||||||
| \section{Construction des quaternions $(\Hq)$} | \section{Construction des quaternions $(\Hq)$} | ||||||
|  |  | ||||||
| \citeannexes{wikipedia_quaternion} | Source: \citeannexes{wikipedia_quaternion} | ||||||
|  |  | ||||||
| \langsubsection{Table de Cayley}{Multiplication table} | \langsubsection{Table de Cayley}{Multiplication table} | ||||||
| %TODO Complete subsection | %TODO Complete subsection | ||||||
| @@ -245,7 +244,7 @@ $\forall((a,b),(c,d)) \in \C^2, a + ib \Rel_L c + id := \begin{cases} | |||||||
|  |  | ||||||
| \section{Construction des octonions $(\Ot)$} | \section{Construction des octonions $(\Ot)$} | ||||||
|  |  | ||||||
| \citeannexes{wikipedia_octonion} | Source: \citeannexes{wikipedia_octonion} | ||||||
|  |  | ||||||
| \langsubsection{Table de multiplication}{Multiplication table} | \langsubsection{Table de multiplication}{Multiplication table} | ||||||
| %TODO Complete subsection | %TODO Complete subsection | ||||||
| @@ -283,7 +282,7 @@ Où $\delta_{ij}$ est le symbole de Kronecker et $\epsilon_{ijk}$ est un tenseur | |||||||
|  |  | ||||||
| \section{Construction des sedenions $(\Se)$} | \section{Construction des sedenions $(\Se)$} | ||||||
|  |  | ||||||
| \citeannexes{wikipedia_sedenion} | Source: \citeannexes{wikipedia_sedenion} | ||||||
|  |  | ||||||
| \langsubsection{Table de multiplication}{Multiplication table} | \langsubsection{Table de multiplication}{Multiplication table} | ||||||
| %TODO Complete subsection | %TODO Complete subsection | ||||||
| @@ -334,3 +333,40 @@ $\rightarrow\leftarrow$ | |||||||
| $\implies |P| = \infty$ | $\implies |P| = \infty$ | ||||||
|  |  | ||||||
| Il existe une infinité de nombre premiers. | Il existe une infinité de nombre premiers. | ||||||
|  |  | ||||||
|  | \langsubsection{Irrationnalité}{Irrationality} | ||||||
|  |  | ||||||
|  | \langsubsubsection{$\forall n \in \N, \sqrt{n}$ est soit un nombre premier ou un carré parfait}{$\sqrt{n}$ is either a prime number or a perfect square} | ||||||
|  |  | ||||||
|  | \begin{theorem_sq} \label{theorem:sqrt_prime} | ||||||
|  | $\Pn$ is the set of all prime numbers \ref{definition:prime_number}. | ||||||
|  | $\forall p \in \Pn, \sqrt{p} \notin \Q$ | ||||||
|  | \end{theorem_sq} | ||||||
|  |  | ||||||
|  | The classical proof of the irrationality of 2 is a specific case of \ref{theorem:sqrt_prime}. | ||||||
|  |  | ||||||
|  | \begin{proof} | ||||||
|  |  | ||||||
|  | By contradiction let's assume $\sqrt{p} \in \Q$ | ||||||
|  |  | ||||||
|  | $a \in \Z, b \in \N^*, \text{PGCD}(a,b) = 1, \sqrt{p} = \frac{a}{b}$ | ||||||
|  |  | ||||||
|  | $\Rightarrow p = (\frac{a}{b})^2 = \frac{a^2}{b^2}$ | ||||||
|  |  | ||||||
|  | $\Rightarrow b^2p = a^2$ | ||||||
|  |  | ||||||
|  | $\Rightarrow p|a$ | ||||||
|  |  | ||||||
|  | Let $c \in \N^*$, $a = pc$ | ||||||
|  |  | ||||||
|  | $\Rightarrow b^2 p = (pc)^2=p^2c^2$ | ||||||
|  |  | ||||||
|  | $\Rightarrow b^2 = pc^2$ | ||||||
|  |  | ||||||
|  | $\Rightarrow p|b$ | ||||||
|  |  | ||||||
|  | $\Rightarrow (p|b \land p|a \land \text{PGCD}(a,b)=1) \Rightarrow \bot$ | ||||||
|  |  | ||||||
|  | $\Rightarrow \sqrt{p} \notin \Q$ | ||||||
|  |  | ||||||
|  | \end{proof} | ||||||
|   | |||||||
| @@ -36,3 +36,14 @@ Stuffs | |||||||
| The Nation that makes a great distinction between its scholars and its warriors will have its thinking done by cowards and its fighting done by fools. | The Nation that makes a great distinction between its scholars and its warriors will have its thinking done by cowards and its fighting done by fools. | ||||||
| \end{quote} | \end{quote} | ||||||
| (Higher education and the military) | (Higher education and the military) | ||||||
|  |  | ||||||
|  | \subsection{Albert Camus} | ||||||
|  | \begin{quote} | ||||||
|  | ... ce, qu'on appelle une raison de vivre est en même temps une excellente raison de mourir. | ||||||
|  | \end{quote} | ||||||
|  | Le Mythe de Sysyphe: Chapitre 1 | ||||||
|  |  | ||||||
|  | \subsection{Père de Raz} | ||||||
|  | \begin{quote} | ||||||
|  | Corps qui ni pète, ni rote est voué à l'éclatement. | ||||||
|  | \end{quote} | ||||||
|   | |||||||
| @@ -1,6 +1,8 @@ | |||||||
| \langchapter{Théorie des ensembles}{Set theory} \label{set_theory} | \langchapter{Théorie des ensembles}{Set theory} \label{set_theory} | ||||||
| %TODO Complete chapter | %TODO Complete chapter | ||||||
|  |  | ||||||
|  | Source: \citeannexes{wikipedia_set_theory} | ||||||
|  |  | ||||||
| Un ensemble est une construction mathématiques qui réuni plusieurs objets en une même instance. | Un ensemble est une construction mathématiques qui réuni plusieurs objets en une même instance. | ||||||
| %A set is a mathematical construct to assemble multiple objects in a single instance. | %A set is a mathematical construct to assemble multiple objects in a single instance. | ||||||
|  |  | ||||||
| @@ -16,6 +18,10 @@ $\forall A\forall B(\forall X(X \in A \Leftrightarrow X \in B) \Rightarrow A = B | |||||||
| \langsubsection{Spécification}{Specification} | \langsubsection{Spécification}{Specification} | ||||||
| %TODO Complete subsection | %TODO Complete subsection | ||||||
|  |  | ||||||
|  | \langsubsection{Ensemble vide}{Empty set} | ||||||
|  |  | ||||||
|  | Il existe un ensemble vide notée $\emptyset$. | ||||||
|  |  | ||||||
| \langsubsection{Paire}{Pairing} | \langsubsection{Paire}{Pairing} | ||||||
| %TODO Complete subsection | %TODO Complete subsection | ||||||
|  |  | ||||||
| @@ -24,13 +30,13 @@ $\forall A\forall B(\forall X(X \in A \Leftrightarrow X \in B) \Rightarrow A = B | |||||||
|  |  | ||||||
| Unite all elements of two given sets into one. | Unite all elements of two given sets into one. | ||||||
|  |  | ||||||
| $n,m \in \N^+$ | $n,m \in \N$ | ||||||
|  |  | ||||||
| $A = \{a_1, \cdots, a_n\}$ | $A = \{a_0, \cdots, a_n\}$ | ||||||
|  |  | ||||||
| $B = \{b_1, \cdots, b_m\}$ | $B = \{b_0, \cdots, b_m\}$ | ||||||
|  |  | ||||||
| $A \cup B = \{a_1, \cdots, a_n, b_1, \cdots, b_m\}$ | $A \union B = \{a_0, \cdots, a_n, b_0, \cdots, b_m\}$ | ||||||
|  |  | ||||||
| \langsubsection{Scheme of replacement}{Scheme of replacement} | \langsubsection{Scheme of replacement}{Scheme of replacement} | ||||||
| %TODO Complete subsection | %TODO Complete subsection | ||||||
| @@ -41,38 +47,56 @@ $A \cup B = \{a_1, \cdots, a_n, b_1, \cdots, b_m\}$ | |||||||
| \subsection{Power set} | \subsection{Power set} | ||||||
| %TODO Complete subsection | %TODO Complete subsection | ||||||
|  |  | ||||||
|  | For a set $S$ such that $|S| = n \Leftrightarrow \mathbf{P}(S) = 2^n$ | ||||||
|  |  | ||||||
| \langsubsection{Choix}{Choice} | \langsubsection{Choix}{Choice} | ||||||
| %TODO Complete subsection | %TODO Complete subsection | ||||||
|  |  | ||||||
| \section{Intersection} | \section{Intersection} | ||||||
| %TODO Complete subsection |  | ||||||
|  | Unite all common elements of two given sets into one. | ||||||
|  |  | ||||||
|  | $n,m,i \in \N$ | ||||||
|  |  | ||||||
|  | $A = \{a_0, \cdots, a_n, c_0, \cdots, c_n\}$ | ||||||
|  |  | ||||||
|  | $B = \{b_0, \cdots, b_m, c_0, \cdots, c_n\}$ | ||||||
|  |  | ||||||
|  | $A \cap B = \{c_0, \cdots, c_n\}$ | ||||||
|  |  | ||||||
| \langsection{Différence des sets}{Set difference} | \langsection{Différence des sets}{Set difference} | ||||||
| %TODO Complete section | %TODO Complete section | ||||||
|  |  | ||||||
| \langsection{Fonction}{Function} | \langsection{Fonction}{Function} | ||||||
| %TODO Complete section |  | ||||||
|  |  | ||||||
| Une fonction $f$ est un opération qui permet de transformer un ou plusieurs éléments d'un set $A$ en d'autres éléments d'un set $B$. | Source: \citeannexes{wikipedia_function_mathematics} | ||||||
|  |  | ||||||
|  | Une fonction $f$ est un tuple d'un domaine \citeannexes{wikipedia_domain_function} $A$ et un codomaine \citeannexes{wikipedia_codomain} $B$. | ||||||
|  |  | ||||||
|  | If the domain is the same as the codomain then the function is an endormorphsim \ref{definition:endomorphism} applied on set theory \ref{set_theory}. | ||||||
|  |  | ||||||
| \subsection{Notation} | \subsection{Notation} | ||||||
| %TODO Complete subsection |  | ||||||
|  |  | ||||||
| $A \longrightarrow B$ | $A \longrightarrow B$ | ||||||
|  |  | ||||||
| $ x \longrightarrow f(x)$ | $ x \longrightarrow f(x)$ | ||||||
|  |  | ||||||
| \langsubsection{Injectivité}{Injectivity} | \langsubsection{Injectivité}{Injectivity} \label{definition:injective} | ||||||
| %TODO Complete subsection |  | ||||||
|  | Source: \citeannexes{wikipedia_injective_function} | ||||||
|  |  | ||||||
| Une fonction $f$ de $E$ dans $F$ est dite \textbf{injective} si, et seulement si, $\forall (a,b) \in E, f(a) = f(b) \Rightarrow a = b$. | Une fonction $f$ de $E$ dans $F$ est dite \textbf{injective} si, et seulement si, $\forall (a,b) \in E, f(a) = f(b) \Rightarrow a = b$. | ||||||
|  |  | ||||||
| \langsubsection{Surjectivité}{Surjectivity} | \langsubsection{Surjectivité}{Surjectivity} \label{definition:surjective} | ||||||
| %TODO Complete subsection |  | ||||||
|  | Source: \citeannexes{wikipedia_surjective_function} | ||||||
|  |  | ||||||
| Une fonction $f$ de $E$ dans $F$ est dite \textbf{surjective} si, et seulement si, $\forall y \in F, \exists x \in E : y = f(x)$. | Une fonction $f$ de $E$ dans $F$ est dite \textbf{surjective} si, et seulement si, $\forall y \in F, \exists x \in E : y = f(x)$. | ||||||
|  |  | ||||||
| \langsubsection{Bijectivité}{Bijectivity} | \langsubsection{Bijectivité}{Bijectivity} | ||||||
| %TODO Complete subsection |  | ||||||
|  |  | ||||||
| Une fonction $f$ de $E$ dans $F$ est dite \textbf{bijective} si, et seulement si, elle est à la fois injective et surjective ou $\forall y \in F, \exists! x \in E : y = f(x)$. | Source: \citeannexes{wikipedia_bijection} \label{definition:bijection} | ||||||
|  |  | ||||||
|  | Une fonction $f$ de $E$ dans $F$ est dite \textbf{bijective} si, et seulement si, elle est à la fois injective \ref{definition:injective} et surjective \ref{definition:surjective} ou $\forall y \in F, \exists! x \in E : y = f(x)$. | ||||||
|  |  | ||||||
|  | Every bijection is an isomorphism \ref{definition:isomorphism} applied on set theory \ref{set_theory}. | ||||||
|   | |||||||
| @@ -130,7 +130,7 @@ Toute sous-suites (ou suites extraite) d'un suite convergente vers $l \in E$ con | |||||||
| Montrer que l’ensemble $\{x_n, n \in \N\}$ est borné. | Montrer que l’ensemble $\{x_n, n \in \N\}$ est borné. | ||||||
| \\ | \\ | ||||||
|  |  | ||||||
| Sachant que $(x_n) \ in E$ converge vers $l \in E$ \&\& $\epsilon > 0$. | Sachant que $(x_n) \in E$ converge vers $l \in E \land \epsilon > 0$. | ||||||
|  |  | ||||||
| $\Leftrightarrow \exists y \in E$ tel que $\{\forall n \in \N, x_n, l\} \subset \bar{\mathbb{B}}(y, \epsilon) \subset E$. | $\Leftrightarrow \exists y \in E$ tel que $\{\forall n \in \N, x_n, l\} \subset \bar{\mathbb{B}}(y, \epsilon) \subset E$. | ||||||
|  |  | ||||||
|   | |||||||
							
								
								
									
										1
									
								
								main.tex
									
									
									
									
									
								
							
							
						
						
									
										1
									
								
								main.tex
									
									
									
									
									
								
							| @@ -77,6 +77,7 @@ De de manière honteusement démagogique, je vous remercie tout lecteurs de ce n | |||||||
| \input{contents/music_theory} | \input{contents/music_theory} | ||||||
| \input{contents/philosophy} | \input{contents/philosophy} | ||||||
| \input{contents/linguistic} | \input{contents/linguistic} | ||||||
|  | \input{contents/definitions} | ||||||
|  |  | ||||||
| \addcontentsline{toc}{chapter}{Références} | \addcontentsline{toc}{chapter}{Références} | ||||||
| \begingroup | \begingroup | ||||||
|   | |||||||
| @@ -1,4 +1,7 @@ | |||||||
| \ProvidesPackage{language_selector} | \ProvidesPackage{packages/language_selector} | ||||||
|  |  | ||||||
|  | \newcommand{\subsubsubsection}[1]{\paragraph{#1}\smallskip} | ||||||
|  | \newcommand{\subsubsubsubsection}[1]{\subparagraph{#1}\smallskip} | ||||||
|  |  | ||||||
| \DeclareOption{french}{ | \DeclareOption{french}{ | ||||||
| 	\def\langoption{french} | 	\def\langoption{french} | ||||||
| @@ -9,6 +12,7 @@ | |||||||
| 	\newcommand{\langsubsection}[2]{\subsection{#1}} | 	\newcommand{\langsubsection}[2]{\subsection{#1}} | ||||||
| 	\newcommand{\langsubsubsection}[2]{\subsubsection{#1}} | 	\newcommand{\langsubsubsection}[2]{\subsubsection{#1}} | ||||||
| 	\newcommand{\langsubsubsubsection}[2]{\subsubsubsection{#1}} | 	\newcommand{\langsubsubsubsection}[2]{\subsubsubsection{#1}} | ||||||
|  | 	\newcommand{\langsubsubsubsubsection}[2]{\subsubsubsubsection{#1}} | ||||||
| 	\newcommand{\langnewcites}[3]{\newcites{#1}{#2}} | 	\newcommand{\langnewcites}[3]{\newcites{#1}{#2}} | ||||||
| } | } | ||||||
|  |  | ||||||
| @@ -21,6 +25,7 @@ | |||||||
| 	\newcommand{\langsubsection}[2]{\subsection{#2}} | 	\newcommand{\langsubsection}[2]{\subsection{#2}} | ||||||
| 	\newcommand{\langsubsubsection}[2]{\subsubsection{#2}} | 	\newcommand{\langsubsubsection}[2]{\subsubsection{#2}} | ||||||
| 	\newcommand{\langsubsubsubsection}[2]{\subsubsubsection{#2}} | 	\newcommand{\langsubsubsubsection}[2]{\subsubsubsection{#2}} | ||||||
|  | 	\newcommand{\langsubsubsubsubsection}[2]{\subsubsubsubsection{#2}} | ||||||
| 	\newcommand{\langnewcites}[3]{\newcites{#1}{#3}} | 	\newcommand{\langnewcites}[3]{\newcites{#1}{#3}} | ||||||
| } | } | ||||||
|  |  | ||||||
|   | |||||||
| @@ -1,7 +1,9 @@ | |||||||
| \ProvidesPackage{macros} | \ProvidesPackage{packages/macros} | ||||||
|  |  | ||||||
| \RequirePackage{amsfonts}                                % Include missing symbols s.a "Natural Numbers" | \RequirePackage{amsfonts}                                % Include missing symbols s.a "Natural Numbers" | ||||||
|  |  | ||||||
|  | \usepackage{amsthm}   % for 'proof' environment | ||||||
|  |  | ||||||
| % Snippet to add dots to TOC | % Snippet to add dots to TOC | ||||||
| % Thanks to "user11232" at https://tex.stackexchange.com/questions/53898/how-to-get-lines-with-dots-in-the-table-of-contents-for-sections | % Thanks to "user11232" at https://tex.stackexchange.com/questions/53898/how-to-get-lines-with-dots-in-the-table-of-contents-for-sections | ||||||
| %\usepackage{tocloft} | %\usepackage{tocloft} | ||||||
| @@ -42,6 +44,7 @@ | |||||||
| \newcommand{\functiondef}[2]{\hspace{15pt}#1 \longmapsto #2} | \newcommand{\functiondef}[2]{\hspace{15pt}#1 \longmapsto #2} | ||||||
| \newcommand{\otherwise}{\text{Sinon}} | \newcommand{\otherwise}{\text{Sinon}} | ||||||
| %\newcommand{\otherwise}{\text{Otherwise}} | %\newcommand{\otherwise}{\text{Otherwise}} | ||||||
|  | \DeclareMathOperator{\union}{\cup} | ||||||
|  |  | ||||||
| \renewcommand{\smallskip}{\vspace{3pt}} | \renewcommand{\smallskip}{\vspace{3pt}} | ||||||
| \renewcommand{\medskip}{\vspace{6pt}} | \renewcommand{\medskip}{\vspace{6pt}} | ||||||
|   | |||||||
| @@ -1,4 +1,4 @@ | |||||||
| \ProvidesPackage{themes} | \ProvidesPackage{packages/themes} | ||||||
|  |  | ||||||
| % Add many functions for colour themes | % Add many functions for colour themes | ||||||
| \RequirePackage{xcolor} | \RequirePackage{xcolor} | ||||||
|   | |||||||
| @@ -287,7 +287,7 @@ | |||||||
| } | } | ||||||
| @online{wikipedia_complex_number, | @online{wikipedia_complex_number, | ||||||
|    title = {Complex number}, |    title = {Complex number}, | ||||||
|    url   = {https://en.wikipedia.org/wiki/Complex_number} |    url   = {https://en.wikipedia.org/wiki/Complex\_number} | ||||||
| } | } | ||||||
| @online{wikipedia_quaternion, | @online{wikipedia_quaternion, | ||||||
|    title = {Quaternion}, |    title = {Quaternion}, | ||||||
| @@ -301,3 +301,35 @@ | |||||||
|    title = {Sedenion}, |    title = {Sedenion}, | ||||||
|    url   = {https://en.wikipedia.org/wiki/Sedenion} |    url   = {https://en.wikipedia.org/wiki/Sedenion} | ||||||
| } | } | ||||||
|  | @online{wikipedia_function_mathematics, | ||||||
|  |   title = {Function (mathematics)}, | ||||||
|  |   url   = {https://en.wikipedia.org/wiki/Function\_(mathematics)} | ||||||
|  | } | ||||||
|  | @online{wikipedia_domain_function, | ||||||
|  |   title = {Domain of a function}, | ||||||
|  |   url   = {https://en.wikipedia.org/wiki/Domain\_of\_a\_function} | ||||||
|  | } | ||||||
|  | @online{wikipedia_codomain, | ||||||
|  |   title = {Codomain}, | ||||||
|  |   url   = {https://en.wikipedia.org/wiki/Codomain} | ||||||
|  | } | ||||||
|  | @online{wikipedia_set_theory, | ||||||
|  |   title = {Set theory}, | ||||||
|  |   url   = {https://en.wikipedia.org/wiki/Set\_theory} | ||||||
|  | } | ||||||
|  | @online{wikipedia_injective_function, | ||||||
|  |   title = {Injective function}, | ||||||
|  |   url   = {https://en.wikipedia.org/wiki/Injective\_function} | ||||||
|  | } | ||||||
|  | @online{wikipedia_surjective_function, | ||||||
|  |   title = {Surjective function}, | ||||||
|  |   url   = {https://en.wikipedia.org/wiki/Surjective\_function} | ||||||
|  | } | ||||||
|  | @online{wikipedia_bijection, | ||||||
|  |   title = {Bijection}, | ||||||
|  |   url   = {https://en.wikipedia.org/wiki/Bijection} | ||||||
|  | } | ||||||
|  | @online{wikipedia_hyperbolic_functions, | ||||||
|  |   title = {Hyperbolic functions}, | ||||||
|  |   url   = {https://en.wikipedia.org/wiki/Hyperbolic\_functions} | ||||||
|  | } | ||||||
|   | |||||||
| @@ -433,3 +433,39 @@ in a principled way.}, | |||||||
|   biburl     = {https://dblp.org/rec/journals/corr/abs-2012-00152.bib}, |   biburl     = {https://dblp.org/rec/journals/corr/abs-2012-00152.bib}, | ||||||
|   bibsource  = {dblp computer science bibliography, https://dblp.org} |   bibsource  = {dblp computer science bibliography, https://dblp.org} | ||||||
| } | } | ||||||
|  | @book{carlyle_2005_french_revolution, | ||||||
|  |   title     = {The French Revolution}, | ||||||
|  |   author    = {Carlyle, T. and Ball, A.H.R.}, | ||||||
|  |   isbn      = {9780486445137}, | ||||||
|  |   page      = {242}, | ||||||
|  |   lccn      = {2005047548}, | ||||||
|  |   series    = {Dover Value Editions}, | ||||||
|  |   year      = {2005}, | ||||||
|  |   publisher = {Dover Publications} | ||||||
|  | } | ||||||
|  | @book{robertson_2003_excess, | ||||||
|  |   title     = {An Excess of Phobias and Manias}, | ||||||
|  |   author    = {John G. Robertson}, | ||||||
|  |   page      = {75}, | ||||||
|  |   isbn      = {9780963091932}, | ||||||
|  |   year      = {2003}, | ||||||
|  |   publisher = {Senior Scribe Publications} | ||||||
|  | } | ||||||
|  | @book{tucker_1970_liberty, | ||||||
|  |   title     = {Liberty}, | ||||||
|  |   author    = {Benjamin Ricketson Tucker}, | ||||||
|  |   page      = {361}, | ||||||
|  |   volumes   = {235,312}, | ||||||
|  |   year      = {1970}, | ||||||
|  |   number    = {vol.~9~{\`a}~10~;vol.~235~{\`a}~312}, | ||||||
|  |   lccn      = {72022711}, | ||||||
|  |   series    = {Radical periodicals in the United States}, | ||||||
|  |   publisher = {Greenwood Reprint Corporation} | ||||||
|  | } | ||||||
|  | @book{wheeler_1910_literature, | ||||||
|  |   title     = {Current Literature}, | ||||||
|  |   author    = {Edward Jewitt Wheeler}, | ||||||
|  |   page      = {564}, | ||||||
|  |   volumes   = {49}, | ||||||
|  |   year      = {1910} | ||||||
|  | } | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user