contents/category_theory.tex : Moved homomorphism before epimorphism and added monomorphism definition

This commit is contained in:
saundersp 2025-02-12 19:00:06 +01:00
parent 2f357e06fc
commit fec2806d58
2 changed files with 38 additions and 24 deletions

View File

@ -16,6 +16,23 @@ A category $\Cat$ is a collection of objects and morphisms
A morphism $f$ on a category $\Cat$ is a transformation between a domain and a codomain.
\end{definition_sq}
\langsubsection{Homomorphisme}{Homomorphism}
Source : \citeannexes{wikipedia_homomorphism}
\begin{definition_sq} \label{definition:homomorphism}
A homomorphism is a morphism between two categories that keeps algebraic structures. Let $(X, \star)$ and $(Y, \composes)$ two algebraic structures and let $\function{\phi}{X}{Y}$.
$$\forall (x, y) \in X^2, \phi(x \star y) = \phi(x) \composes \phi(y)$$
Similarly, such that the following diagram commutes :
\[\begin{tikzcd}
X \cartesianProduct X \arrow[r, "\phi \cartesianProduct \phi"] \arrow[d, "\star"] & Y \cartesianProduct Y \arrow[d, "\composes"] \\
X \arrow[r, "\phi"] & Y
\end{tikzcd}\]
\end{definition_sq}
\langsubsection{Section et rétraction}{Section and retraction}
let $\function{f}{X}{Y}$ and $\function{g}{Y}{X}$ such that $f \composes g = \identity_Y$
@ -35,18 +52,29 @@ Right inverse of a morphism, is the dual of a retraction. A section that is also
Left inverse of a morphism, is the dual of a section. A retraction that is also a monomorphism is an isomorphism
\langsubsection{Monomorphisme}{Monomorphism} \label{definition:monomorphism}
Source : \citeannexes{wikipedia_monomorphism}
A monomorphism is a homomorphism that is injective \ref{definition:injective}, similarly, a morphism that is left-cancellable i.e.
Let $\function{f}{X}{Y}$ and $\function{g_1,g_2}{Y}{Z}$, $f \composes g_1 = f \composes g_2 \implies g_1 = g_2$.
\[\begin{tikzcd}
Z \arrow[r, "g_1", shift left=1ex] \arrow[r, "g_2", shift right=1ex] & X \arrow[r, "f"] & Y
\end{tikzcd}\]
\langsubsection{Epimorphisme}{Epimorphism} \label{definition:epimorphism}
%TODO Complete section
Source : \citeannexes{wikipedia_epimorphism}
Let $\function{f}{X}{Y}$ and $\function{g_1,g_2}{Y}{Z}$
An epimorphism is a homomorphism that is surjective \ref{definition:surjective}, similarly, a morphism that is right-cancellable i.e.
An epimorphism is a morphism that is right-cancellable i.e. $g_1 \composes f = g_2 \composes f \implies g_1 = g_2$
Let $\function{f}{X}{Y}$ and $\function{g_1,g_2}{Y}{Z}$, $g_1 \composes f = g_2 \composes f \implies g_1 = g_2$.
\begin{tikzcd}
\[\begin{tikzcd}
X \arrow[r, "f"] & Y \arrow[r, "g_1", shift left=1ex] \arrow[r, "g_2", shift right=1ex] & Z
\end{tikzcd}
\end{tikzcd}\]
\langsubsection{Isomorphisme}{Isomorphism} \label{definition:isomorphism}
%TODO Complete section
@ -67,24 +95,6 @@ Isomorphism is a bijective \ref{definition:bijection} morphism.
An automorphism is a morphism that is both an isomorphism \ref{definition:isomorphism} and an endomorphism \ref{definition:endomorphism}.
\langsubsection{Homomorphisme}{Homomorphism}
%TODO Complete section
\begin{definition_sq} \label{definition:homomorphism}
A homomorphism is a morphism between two categories that keeps algebraic structures. Let $(X, \star)$ and $(Y, \composes)$ two algebraic structures and let $\function{\phi}{X}{Y}$.
$$\forall (x, y) \in X^2, \phi(x \star y) = \phi(x) \composes \phi(y)$$
Similarly, such that the following diagram commutes :
\begin{tikzcd}
X \cartesianProduct X \arrow[r, "\phi \cartesianProduct \phi"] \arrow[d, "\star"] & Y \cartesianProduct Y \arrow[d, "\composes"] \\
X \arrow[r, "\phi"] & Y
\end{tikzcd}
\end{definition_sq}
Source: \citeannexes{wikipedia_homomorphism}
\langsubsection{Homeomorphisme}{Homeomorphism}
%TODO Complete section

View File

@ -349,6 +349,10 @@
title = {Epimorphism},
url = {https://en.wikipedia.org/wiki/Epimorphism}
}
@online{wikipedia_monomorphism,
title = {Monomorphism},
url = {https://en.wikipedia.org/wiki/Monomorphism}
}
@online{wikipedia_section_category_theory,
title = {Section (category theory)},
url = {https://en.wikipedia.org/wiki/Section\_(category_theory)}